List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753678/publications.pdf Version: 2024-02-01

		15466	9311
222	21,561	65	143
papers	citations	h-index	g-index
232	232	232	23251
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3, 887.	5.8	2,078
2	Evolution of Electronic Structure in Atomically Thin Sheets of WS ₂ and WSe ₂ . ACS Nano, 2013, 7, 791-797.	7.3	1,690
3	Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47, 1822-1873.	18.7	1,274
4	Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44, 2757-2785.	18.7	1,034
5	Strong Photoluminescence Enhancement of MoS ₂ through Defect Engineering and Oxygen Bonding. ACS Nano, 2014, 8, 5738-5745.	7.3	995
6	Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano, 2012, 6, 5988-5994.	7.3	788
7	Nanotube–Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899.	11.1	778
8	Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013, 5, 9677.	2.8	724
9	The shear mode of multilayer graphene. Nature Materials, 2012, 11, 294-300.	13.3	568
10	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
11	Raman spectroscopy of shear and layer breathing modes in multilayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	1.1	404
12	Robust optical emission polarization in MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>monolayers through selective valley excitation. Physical Review B, 2012, 86</mml:math 	1.1	385
13	Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 88, .</mml:math 	1.1	365
14	Carrier and Polarization Dynamics in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m Physical Review Letters, 2014, 112, 047401.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	2.9 ml:mn>2<	/mml:mn>
15	Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature Communications, 2017, 8, 278.	5.8	311
16	Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8, 6435-6450.	2.8	300
17	Intercalation of Few-Layer Graphite Flakes with FeCl ₃ : Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. Journal of the American Chemical Society, 2011, 133, 5941-5946.	6.6	239
18	Raman scattering of non–planar graphite: arched edges, polyhedral crystals, whiskers and cones. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2289-2310.	1.6	211

#	Article	IF	CITATIONS
19	Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. Journal of Materials Chemistry C, 2015, 3, 7022-7028.	2.7	203
20	Resonant Raman spectroscopy of twisted multilayer graphene. Nature Communications, 2014, 5, 5309.	5.8	197
21	Layerâ€Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Advanced Functional Materials, 2017, 27, 1604468.	7.8	189
22	Photoluminescence Spectroscopy of Carbon Nanotube Bundles: Evidence for Exciton Energy Transfer. Physical Review Letters, 2007, 99, 137402.	2.9	181
23	Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano, 2017, 11, 11777-11802.	7.3	179
24	Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Physical Review B, 1998, 58, 5435-5439.	1.1	172
25	Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Research, 2015, 8, 3651-3661.	5.8	159
26	Temperature dependence of the Raman spectra of carbon nanotubes. Journal of Applied Physics, 1998, 84, 4022-4024.	1.1	158
27	Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> -Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602.	1.5	158
28	Measuring Interlayer Shear Stress in Bilayer Graphene. Physical Review Letters, 2017, 119, 036101.	2.9	155
29	Photoluminescence properties and exciton dynamics in monolayer WSe2. Applied Physics Letters, 2014, 105, .	1.5	149
30	Moiré Phonons in Twisted Bilayer MoS ₂ . ACS Nano, 2018, 12, 8770-8780.	7.3	149
31	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. Journal of Physical Chemistry C, 2010, 114, 17267-17285.	1.5	144
32	Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS ₂ and WSe ₂ . 2D Materials, 2016, 3, 025016.	2.0	144
33	Composition-dependent Raman modes of Mo _{1â^'x} W _x S ₂ monolayer alloys. Nanoscale, 2014, 6, 2833-2839.	2.8	142
34	The intrinsic temperature effect of the Raman spectra of graphite. Applied Physics Letters, 1999, 74, 1818-1820.	1.5	141
35	Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Physical Review B, 2001, 64, .	1.1	141
36	Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Research, 2014, 7, 694-703.	5.8	140

#	Article	IF	CITATIONS
37	Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. ACS Nano, 2015, 9, 7440-7449.	7.3	127
38	Phonon renormalization in reconstructed MoS2 moir $ ilde{A}$ © superlattices. Nature Materials, 2021, 20, 1100-1105.	13.3	121
39	Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS ₂ . Nanoscale, 2016, 8, 8324-8332.	2.8	120
40	Anisotropic Growth of Nonlayered CdS on MoS ₂ Monolayer for Functional Vertical Heterostructures. Advanced Functional Materials, 2016, 26, 2648-2654.	7.8	118
41	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy, 1997, 28, 369-372.	1.2	115
42	Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Physical Review B, 2002, 66, .	1.1	113
43	Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots. Physical Review B, 2003, 68, .	1.1	111
44	A Broadband Fluorographene Photodetector. Advanced Materials, 2017, 29, 1700463.	11.1	110
45	Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Applied Physics Letters, 2006, 89, 203120.	1.5	108
46	Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nature Communications, 2019, 10, 5544.	5.8	108
47	Hexagonal Selenium Nanowires Synthesized via Vapor-Phase Growth. Journal of Physical Chemistry B, 2004, 108, 4627-4630.	1.2	94
48	Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoTe<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> . Physical Review B, 2016, 93, .	1.1	93
49	Interfacial Interactions in van der Waals Heterostructures of MoS ₂ and Graphene. ACS Nano, 2017, 11, 11714-11723.	7.3	92
50	Growing 20 cm Long DWNTs/TWNTs at a Rapid Growth Rate of 80â^'90 μm/s. Chemistry of Materials, 2010, 22, 1294-1296.	3.2	88
51	Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Physical Review B, 2010, 82, .	1.1	87
52	Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50, 5167-5175.	5.4	87
53	Coherent Longitudinal Acoustic Phonon Approaching THz Frequency in Multilayer Molybdenum Disulphide. Scientific Reports, 2014, 4, 5722.	1.6	80
54	Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chinese Physics B, 2017, 26, 067802.	0.7	80

#	Article	IF	CITATIONS
55	High-performance polarization-sensitive photodetectors on two-dimensional <i>β</i> -InSe. National Science Review, 2022, 9, nwab098.	4.6	75
56	Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy. Advanced Optical Materials, 2016, 4, 756-762.	3.6	74
57	Near Full-Composition-Range High-Quality GaAs _{1–<i>x</i>} Sb _{<i>x</i>} Nanowires Grown by Molecular-Beam Epitaxy. Nano Letters, 2017, 17, 622-630.	4.5	74
58	Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy. Physical Review Letters, 2017, 119, 196803.	2.9	74
59	Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. Npj 2D Materials and Applications, 2020, 4, .	3.9	74
60	Raman Spectroscopy of Two-Dimensional Borophene Sheets. ACS Nano, 2019, 13, 4133-4139.	7.3	73
61	Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates. Nanoscale, 2015, 7, 8135-8141.	2.8	72
62	Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon, 2000, 38, 2041-2045.	5.4	70
63	Anisotropic Spectroscopy and Electrical Properties of 2D ReS _{2(1–} <i>_x</i> ₎ Se ₂ <i>_x</i> Alloys with Distorted 1T Structure. Small, 2017, 13, 1603788.	5.2	70
64	Lowâ€Temperature Eutectic Synthesis of PtTe ₂ with Weak Antilocalization and Controlled Layer Thinning. Advanced Functional Materials, 2018, 28, 1803746.	7.8	70
65	Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flexible Electronics, 2018, 2, .	5.1	69
66	Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites. ACS Nano, 2020, 14, 4689-4697.	7.3	69
67	Intensity and profile manifestation of resonant Raman behavior of carbon nanotubes. Carbon, 2002, 40, 1131-1134.	5.4	68
68	Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 2014, 8, 4836-4847.	7.3	66
69	Optical and electrical properties of two-dimensional anisotropic materials. Journal of Semiconductors, 2019, 40, 061001.	2.0	65
70	Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nature Communications, 2019, 10, 2419.	5.8	60
71	Extraordinary Second Harmonic Generation in ReS ₂ Atomic Crystals. ACS Photonics, 2018, 5, 3485-3491.	3.2	57
72	Application of Raman spectroscopy in carbon nanotube-based polymer composites. Science Bulletin, 2010, 55, 3978-3988.	1.7	56

#	Article	IF	CITATIONS
73	Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction. Advanced Materials Technologies, 2017, 2, 1600262.	3.0	55
74	Controllable Synthesis of Two-Dimensional Ruddlesden–Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219.	2.1	54
75	Valley depolarization in monolayer WSe2. Scientific Reports, 2015, 5, 15625.	1.6	53
76	Hierarchical Grapheneâ€Based Films with Dynamic Self‣tiffening for Biomimetic Artificial Muscle. Advanced Functional Materials, 2016, 26, 7003-7010.	7.8	53
77	Solventâ€Based Softâ€Patterning of Graphene Lateral Heterostructures for Broadband Highâ€Speed Metal–Semiconductor–Metal Photodetectors. Advanced Materials Technologies, 2017, 2, 1600241.	3.0	53
78	The Pentagonal Nature of Self-Assembled Silicon Chains and Magic Clusters on Ag(110). Nano Letters, 2018, 18, 2937-2942.	4.5	52
79	The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4K to 1000K. Carbon, 2019, 152, 451-458.	5.4	51
80	Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy. ACS Nano, 2013, 7, 1838-1844.	7.3	49
81	Probing the acoustic phonon dispersion and sound velocity of graphene by Raman spectroscopy. Carbon, 2019, 149, 19-24.	5.4	49
82	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotubeâ^'Polymer Composites. Journal of Physical Chemistry C, 2008, 112, 20227-20232.	1.5	45
83	Raman spectroscopy at the edges of multilayer graphene. Carbon, 2015, 85, 221-224.	5.4	45
84	Substrate-free layer-number identification of two-dimensional materials: A case of Mo0.5W0.5S2 alloy. Applied Physics Letters, 2015, 106, .	1.5	45
85	Resonantly enhanced Raman scattering and high-order Raman spectra of single-walled carbon nanotubes. Applied Physics Letters, 1999, 75, 1524-1526.	1.5	44
86	Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Applied Physics Letters, 2008, 92, 121905.	1.5	44
87	Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes. Applied Physics Letters, 2002, 80, 2553-2555.	1.5	43
88	Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes. Carbon, 2016, 99, 118-122.	5.4	43
89	Tailoring Alphabetical Metamaterials in Optical Frequency: Plasmonic Coupling, Dispersion, and Sensing. ACS Nano, 2014, 8, 3796-3806.	7.3	42
90	Observation of forbidden phonons, Fano resonance and dark excitons by resonance Raman scattering in few-layer WS ₂ . 2D Materials, 2017, 4, 031007.	2.0	41

#	Article	IF	CITATIONS
91	Linear Dichroism Conversion in Quasiâ€1D Perovskite Chalcogenide. Advanced Materials, 2019, 31, e1902118.	11.1	41
92	Highly Conductive Graphene Paper with Vertically Aligned Reduced Graphene Oxide Sheets Fabricated by Improved Electrospray Deposition Technique. ACS Applied Materials & Interfaces, 2019, 11, 10810-10817.	4.0	40
93	Nonlinear saturable absorption of vertically stood WS_2 nanoplates. Optics Letters, 2014, 39, 6450.	1.7	39
94	Photoluminescence characteristics of GaAsSbN/GaAs epilayers lattice-matched to GaAs substrates. Solid State Communications, 2004, 132, 707-711.	0.9	37
95	Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered Crl ₃ . Science Advances, 2020, 6, .	4.7	37
96	Determining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates. Nanotechnology, 2016, 27, 145704.	1.3	35
97	Ultrafast Electron Cooling and Decay in Monolayer WS ₂ Revealed by Time- and Energy-Resolved Photoemission Electron Microscopy. Nano Letters, 2020, 20, 3747-3753.	4.5	35
98	Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature. Applied Physics Letters, 2018, 112, .	1.5	34
99	2D FeOCI: A Highly Inâ€Plane Anisotropic Antiferromagnetic Semiconductor Synthesized via Temperatureâ€Oscillation Chemical Vapor Transport. Advanced Materials, 2022, 34, e2108847.	11.1	34
100	Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2352-2359.	1.3	33
101	Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. Journal of Physical Chemistry C, 2017, 121, 26034-26043.	1.5	33
102	A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Materials, 2017, 9, e442-e442.	3.8	33
103	Linear dichroism conversion in quasi-1D perovskite chalcogenide. Chinese Science Bulletin, 2019, 64, 2366-2368.	0.4	33
104	Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy. Superlattices and Microstructures, 2016, 93, 27-31.	1.4	32
105	Probing the shear and layer breathing modes in multilayer graphene by Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 19-30.	1.2	31
106	Identification of the conducting category of individual carbon nanotubes from Stokes and anti-Stokes Raman scattering. Physical Review B, 2000, 62, 5186-5190.	1.1	29
107	Quantum dots in glass spherical microcavity. Applied Physics Letters, 2001, 79, 153-155.	1.5	29
108	Carbon nanotubes for ultrafast photonics. Physica Status Solidi (B): Basic Research, 2007, 244, 4303-4307.	0.7	29

#	Article	IF	CITATIONS
109	Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges. Physical Review B, 2014, 89, .	1.1	28
110	Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon, 2016, 110, 225-231.	5.4	28
111	Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.	5.4	28
112	Photoluminescence of CdSe nanowires grown with and without metal catalyst. Nano Research, 2011, 4, 343-359.	5.8	27
113	Damage-free and rapid transfer of CVD-grown two-dimensional transition metal dichalcogenides by dissolving sacrificial water-soluble layers. Nanoscale, 2017, 9, 19124-19130.	2.8	27
114	Exciton valley dynamics in monolayer WSe ₂ probed by the two-color ultrafast Kerr rotation. Physical Chemistry Chemical Physics, 2017, 19, 3176-3181.	1.3	26
115	High Anisotropy in Tubular Layered Exfoliated KP ₁₅ . ACS Nano, 2018, 12, 1712-1719.	7.3	24
116	Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. Science Bulletin, 2020, 65, 1894-1900.	4.3	24
117	Macroscopic assembled graphene nanofilms based room temperature ultrafast midâ€infrared photodetectors. InformaÄnÄ-Materiály, 2022, 4, .	8.5	24
118	Raman scattering of folded acoustic phonons in self-assembled Si/Ge dot superlattices. Applied Physics Letters, 2004, 84, 2632-2634.	1.5	23
119	Optical contrast determination of the thickness of SiO2 film on Si substrate partially covered by two-dimensional crystal flakes. Science Bulletin, 2015, 60, 806-811.	4.3	22
120	Phonon Confinement Effect in Two-dimensional Nanocrystallites of Monolayer MoS ₂ to Probe Phonon Dispersion Trends Away from Brillouin-Zone Center. Chinese Physics Letters, 2016, 33, 057801.	1.3	22
121	Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy, 2018, 49, 46-53.	1.2	22
122	Edgeâ€Epitaxial Growth of InSe Nanowires toward Highâ€Performance Photodetectors. Small, 2020, 16, e1905902.	5.2	22
123	The phonon confinement effect in two-dimensional nanocrystals of black phosphorus with anisotropic phonon dispersions. Nanoscale, 2018, 10, 8704-8711.	2.8	21
124	Phonon-Assisted Photoluminescence Up-Conversion of Silicon-Vacancy Centers in Diamond. Journal of Physical Chemistry Letters, 2018, 9, 6656-6661.	2.1	21
125	Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. Nano Letters, 2022, 22, 1233-1241.	4.5	21
126	Growth of large domain epitaxial graphene on the C-face of SiC. Journal of Applied Physics, 2012, 112, .	1.1	20

#	Article	IF	CITATIONS
127	Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2414-2418.	1.3	19
128	Stronger Interlayer Interactions Contribute to Faster Hot Carrier Cooling of Bilayer Graphene under Pressure. Physical Review Letters, 2021, 126, 027402.	2.9	19
129	Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. Journal of Semiconductors, 2017, 38, 031006.	2.0	18
130	Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, 2019, , .	0.4	18
131	Raman study of ultrathin Fe ₃ O ₄ films on GaAs(001) substrate: stoichiometry, epitaxial orientation and strain. Journal of Raman Spectroscopy, 2011, 42, 1388-1391.	1.2	17
132	Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Nonresonant Raman Spectroscopy and Finite Elements Simulations. Nano Letters, 2016, 16, 7664-7670.	4.5	17
133	Dynamic fingerprint of fractionalized excitations in single-crystalline Cu3Zn(OH)6FBr. Nature Communications, 2021, 12, 3048.	5.8	17
134	Donor–Acceptor Pair Quantum Emitters in Hexagonal Boron Nitride. Nano Letters, 2022, 22, 1331-1337.	4.5	17
135	Efficiently producing single-walled carbon nanotube rings and investigation of their field emission properties. Nanotechnology, 2006, 17, 2355-2361.	1.3	16
136	Temperature and electron density dependence of spin relaxation in GaAs/AlGaAs quantum well. Nanoscale Research Letters, 2011, 6, 84.	3.1	16
137	Raman evidence for atomic correlation between the two constituent tubes in double-walled carbon nanotubes. Physical Review B, 2006, 73, .	1.1	15
138	Photoluminescence from the nitrogen-perturbed above-bandgap states in dilute GaAs1â^'xNx alloys: A microphotoluminescence study. Physical Review B, 2006, 73, .	1.1	15
139	Breakdown of Raman selection rules by Fröhlich interaction in few-layer WS2. Nano Research, 2021, 14, 239-244.	5.8	15
140	The numerical-aperture-dependent optical contrast and thickness determination of ultrathin flakes of two-dimensional atomic crystals: A case of graphene multilayers. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 110702.	0.2	15
141	Magneto-Raman Study of Magnon–Phonon Coupling in Two-Dimensional Ising Antiferromagnetic FePS ₃ . Journal of Physical Chemistry Letters, 2022, 13, 1533-1539.	2.1	15
142	Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method. Journal of Applied Physics, 2003, 94, 5715-5719.	1.1	14
143	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. IScience, 2018, 7, 110-119.	1.9	14
144	Unraveling the Defect Emission and Exciton–Lattice Interaction in Bilayer WS2. Journal of Physical Chemistry C, 2019, 123, 4433-4440.	1.5	14

#	Article	IF	CITATIONS
145	Engineering the interface in mechanically responsive graphene-based films. RSC Advances, 2018, 8, 36257-36263.	1.7	13
146	Phase-Changing in Graphite Assisted by Interface Charge Injection. Nano Letters, 2021, 21, 5648-5654.	4.5	12
147	Modulation of MagR magnetic properties via iron–sulfur cluster binding. Scientific Reports, 2021, 11, 23941.	1.6	12
148	Ultralow-frequency Raman system down to 10 cmâ^'1 with longpass edge filters and its application to the interface coupling in t(2+2)LGs. Review of Scientific Instruments, 2016, 87, 053122.	0.6	11
149	Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. Journal of Semiconductors, 2019, 40, 091001.	2.0	11
150	Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 399-405.	2.1	11
151	Filter-based ultralow-frequency Raman measurement down to 2 cmâ^'1 for fast Brillouin spectroscopy measurement. Review of Scientific Instruments, 2017, 88, 053110.	0.6	11
152	Circular polarization of excitonic luminescence in CdTe quantum wells with excess electrons of different densities. Physical Review B, 2001, 63, .	1.1	10
153	Raman scattering from an individual tubular graphite cone. Carbon, 2007, 45, 1116-1119.	5.4	10
154	Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil. Chinese Physics Letters, 2014, 31, 067202.	1.3	10
155	Electric Field Tuning of Interlayer Coupling in Noncentrosymmetric 3R-MoS ₂ with an Electric Double Layer Interface. ACS Applied Materials & Interfaces, 2020, 12, 46900-46907.	4.0	10
156	Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis. Advanced Functional Materials, 2021, 31, 2006738.	7.8	10
157	Phonon-assisted electronic states modulation of few-layer PdSe2 at terahertz frequencies. Npj 2D Materials and Applications, 2021, 5, .	3.9	10
158	Correlating Symmetries of Lowâ€Frequency Vibrations and Selfâ€Trapped Excitons in Layered Perovskites for Light Emission with Different Colors. Small, 2022, , 2106759.	5.2	10
159	Resonant Raman scattering of discrete hole states in self-assembled Si/Ge quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 312-316.	1.3	9
160	Intrinsic effect of interfacial coupling on the high-frequency intralayer modes in twisted multilayer MoTe ₂ . Nanoscale, 2021, 13, 9732-9739.	2.8	9
161	Unusual Deformation and Fracture in Gallium Telluride Multilayers. Journal of Physical Chemistry Letters, 2022, 13, 3831-3839.	2.1	9
162	Raman identification of edge alignment of bilayer graphene down to the nanometer scale. Nanoscale, 2014, 6, 7519-7525.	2.8	8

#	Article	IF	CITATIONS
163	In-Phase Family and Self-Similarity of Interlayer Vibrational Frequencies in van der Waals Layered Materials. Journal of Physical Chemistry C, 2015, 119, 6906-6911.	1.5	8
164	Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene. Nanoscale, 2018, 10, 16138-16144.	2.8	8
165	Spin–Phonon Coupling in Ferromagnetic Monolayer Chromium Tribromide. Advanced Materials, 2022, 34, e2108506.	11.1	8
166	Multiphonon Process in Mn-Doped ZnO Nanowires. Nano Letters, 2022, 22, 5385-5391.	4.5	8
167	Electrical manifestation of the quantum-confined Stark effect by quantum capacitance response in an optically excited quantum well. Physical Review B, 2001, 63, .	1.1	7
168	Selectively excited photoluminescence of GaAs[sub 1â^x]N[sub x] single quantum wells. Journal of Applied Physics, 2003, 94, 4863.	1.1	7
169	Depth profile of strain and composition in Siâ^Ge dot multilayers by microscopic phonon Raman spectroscopy. Journal of Applied Physics, 2005, 98, 113517.	1.1	7
170	Enhanced infrared emission from colloidal HgTe nanocrystal quantum dots on silicon-on-insulator photonic crystals. Applied Physics Letters, 2009, 95, 053107.	1.5	7
171	Highly conductive, flexible and functional multi-channel graphene microtube fabricated by electrospray deposition technique. Journal of Materials Science, 2019, 54, 14378-14387.	1.7	7
172	Intrinsic phonon anharmonicity in heavily doped graphene probed by Raman spectroscopy. Carbon, 2021, 185, 282-288.	5.4	7
173	Raman-forbidden mode and oxygen ordering inBi2Sr2â^'xLaxCuO6+ysingle crystals annealed in oxygen. Physical Review B, 2000, 61, 11324-11327.	1.1	6
174	Resonant Raman scattering with the E+ band in a dilute GaAs1â^'xNx alloy (x=0.1%). Applied Physics Letters, 2006, 89, 101912.	1.5	6
175	Spectral shape of one-photon luminescence from single gold nanorods. AIP Advances, 2017, 7, .	0.6	6
176	Charge State Manipulation of NV Centers in Diamond under Phonon-Assisted Anti-Stokes Excitation of NV ⁰ . ACS Photonics, 2022, 9, 1605-1613.	3.2	6
177	Capacitance-voltage characteristic as a trace of the exciton evolvement from spatially direct to indirect in quantum wells. Semiconductor Science and Technology, 2001, 16, 822-825.	1.0	5
178	Photo-capacitance response of internal tunnelling coupling in quantum-dot-imbedded heterostructures under selective photo-excitation. Journal of Physics Condensed Matter, 2004, 16, 6519-6525.	0.7	5
179	Systematic investigation on the influence of the As ₄ flux on the magnetic property of (In,Cr)As quantum dots. Europhysics Letters, 2008, 84, 58007.	0.7	5
180	Modulation of Fermi velocities of Dirac electrons in single layer graphene by moiré superlattice. Applied Physics Letters, 2013, 103, .	1.5	5

#	Article	IF	CITATIONS
181	Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	5
182	Signal-to-noise ratio of Raman signal measured by multichannel detectors*. Chinese Physics B, 2021, 30, 097807.	0.7	5
183	Electronic Raman Scattering in Suspended Semiconducting Carbon Nanotube. Journal of Physical Chemistry Letters, 2020, 11, 10497-10503.	2.1	5
184	Azimuth-Resolved Circular Dichroism of Metamaterials. Journal of Physical Chemistry Letters, 2022, 13, 1697-1704.	2.1	5
185	Experimental measurement of microwave-induced electron spin-flip time. Applied Physics Letters, 2001, 78, 204-206.	1.5	4
186	Raman study of low-temperature-grownAl0.29Ga0.71As/GaAsphotorefractive materials. Physical Review B, 2002, 65, .	1.1	4
187	Double resonance Raman scattering of second-order Raman modes from an individual graphite whisker. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 93-96.	1.3	4
188	Two opposite gradients of hole density in as-grown and annealed (Ga,Mn)As layers. Journal of Magnetism and Magnetic Materials, 2007, 308, 313-317.	1.0	4
189	Observation of N-Shaped Negative Differential Resistance in GaAs-Based Modulation-Doped Field Effect Transistor with InAs Quantum Dots. Japanese Journal of Applied Physics, 2010, 49, 104002.	0.8	4
190	Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices. Journal of Semiconductors, 2019, 40, 060101.	2.0	4
191	The second-order combination Raman modes of bilayer graphene in the range of 1800-2150 cm-1. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 147802.	0.2	4
192	Phononâ€Related Monochromatic THz Radiation and its Magnetoâ€Modulation in 2D Ferromagnetic Cr ₂ Ge ₂ Te ₆ . Advanced Science, 2022, 9, e2103229.	5.6	4
193	Intralayer Phonons in Multilayer Graphene Moir $ ilde{A}$ © Superlattices. Research, 2022, 2022, .	2.8	4
194	Unusual carrier thermalization in a dilute GaAs1â^'xNx alloy. Applied Physics Letters, 2007, 90, 061905.	1.5	3
195	Electronic structure of twisted bilayer graphene. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 157302.	0.2	3
196	Dual-modulated photoreflectance spectra of semi-insulating GaAs. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 147801.	0.2	3
197	Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed on the Ag-coated anodic aluminum oxide (AAO) surface. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 469-473.	1.3	2
198	Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapour deposition. Chinese Physics B, 2005, 14, 2068-2076.	1.3	2

#	Article	IF	CITATIONS
199	Influences of As flux on the lattice constants, magnetic and transport properties of (Ga, Mn)As epilayers. Solid State Communications, 2007, 141, 453-458.	0.9	2
200	A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements. Review of Scientific Instruments, 2017, 88, 083114.	0.6	2
201	Raman Spectroscopy of Monolayer and Multilayer Graphenes. Springer Series in Materials Science, 2019, , 1-27.	0.4	2
202	Interferenceâ€enhanced deepâ€ultraviolet Raman signals of hexagonal boron nitride flake and its underlying silicon substrate. Journal of Raman Spectroscopy, 0, , .	1.2	2
203	Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 137801.	0.2	2
204	Resonant Multi-phonon Raman scattering of black phosphorus. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 167803.	0.2	2
205	Tunable Polarized Microcavity Characterized by Magnetic Circular Dichroism Spectrum. Journal of Physical Chemistry Letters, 2022, 13, 3244-3250.	2.1	2
206	Brillouin Light Scattering of Halide Double Perovskite. Advanced Photonics Research, 2022, 3, .	1.7	2
207	Signatures of moire excitons. Journal of Semiconductors, 2019, 40, 040202.	2.0	1
208	Ultralow-Frequency Raman Spectroscopy of Two-dimensional Materials. Springer Series in Materials Science, 2019, , 203-230.	0.4	1
209	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. , 1997, 28, 369.		1
210	Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 147801.	0.2	1
211	Zenith-angle resolved polarized Raman spectroscopy of graphene. Carbon, 2022, 191, 471-476.	5.4	1
212	A tunable Raman system based on ultrafast laser for Raman excitation profile measurement. Review of Scientific Instruments, 2021, 92, 123904.	0.6	1
213	Self-assembled Si/Ge quantum dot structures for novel device applications. Materials Research Society Symposia Proceedings, 2002, 737, 361.	0.1	0
214	Optical Study of Localized and Delocalized States in GaAsN/GaAs. Materials Research Society Symposia Proceedings, 2003, 798, 634.	0.1	0
215	Hexagonal Selenium Nanowires Synthesized via Vapor-Phase Growth ChemInform, 2004, 35, no.	0.1	0
216	OPTICAL AND ELECTRICAL INVESTIGATION OF LOW DIMENSIONAL SELF-ASSEMBLED InAs QUANTUM DOT FIELD EFFECT TRANSISTORS. International Journal of Nanoscience, 2006, 05, 721-727.	0.4	0

#	Article	IF	CITATIONS
217	International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN 2010). Nanoscale Research Letters, 2011, 6, 82.	3.1	0
218	Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy. Chinese Physics B, 2015, 24, 077804.	0.7	0
219	Optical properties of the E0ï¼(ΔO energy level higher than the bandgap of GaAs studied by micro-photoluminescence technique. Wuli Xuebao/Acta Physica Sinica, 2007, 56, 4213.	0.2	Ο
220	Periodic oscillation in the reflection and photoluminescence spectra of suspended two-dimensional crystal flakes. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 136801.	0.2	0
221	Spectral shape of one-photon luminescence from single gold nanorods. , 2018, , .		0
222	Interfacial Coupling and Electron-phonon Coupling in van der Waals Heterostructures. , 2019, , .		0