Mohammadreza Rheza Khalesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753672/publications.pdf

Version: 2024-02-01

43 papers 1,220 citations

430754 18 h-index 377752 34 g-index

43 all docs 43 docs citations

43 times ranked 1552 citing authors

#	Article	IF	Citations
1	Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence. Critical Reviews in Food Science and Nutrition, 2022, 62, 6973-6989.	5.4	1 5
2	Development of a natamycin-based non-migratory antimicrobial active packaging for extending shelf-life of yogurt drink (Doogh). Food Chemistry, 2022, 366, 130606.	4.2	17
3	Eco-friendly †ochratoxin A†control in stored licorice roots †quality assurance perspective. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 1321-1336.	1.1	1
4	Semi-continuous production of xanthan in biofilm reactor using Xanthomonas campestris. Journal of Biotechnology, 2021, 328, 1-11.	1.9	5
5	Production of synbiotic ice cream using <i>Lactobacillus casei</i> / <i>Lactobacillus plantarum</i> and fructooligosaccharides. Journal of Food Processing and Preservation, 2021, 45, e15423.	0.9	13
6	In Vitro Digestibility and Antioxidant Activity of Plant Protein Isolate and Milk Protein Concentrate Blends. Catalysts, 2021, 11, 787.	1.6	21
7	Generation of hydrolysates from rice bran proteins using a combined ultrasonication-Alcalase hydrolysis treatment. Food Bioscience, 2021, 42, 101110.	2.0	33
8	Investigation of the flowability, thermal stability and emulsification properties of two milk protein concentrates having different levels of native whey proteins. Food Research International, 2021, 147, 110576.	2.9	10
9	Physicochemical properties and water interactions of milk protein concentrate with two different levels of undenatured whey protein. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127516.	2.3	5
10	Electrospinning of glutelin-hordein incorporated with Oliveria decumbens essential oil: Characterization of nanofibers. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112058.	2.5	13
11	Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocolloids, 2020, 101, 105489.	5.6	49
12	Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods, 2020, 64, 103636.	1.6	91
13	Optimization of gelatin production from Barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases. Food Hydrocolloids, 2020, 108, 105970.	5.6	39
14	Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochemical Engineering Journal, 2020, 157, 107554.	1.8	22
15	Effect of metal support and different carbon sources on CLA production using Lactobacillus plantarum. Biochemical Engineering Journal, 2020, 162, 107715.	1.8	6
16	Fabrication of Chitosan/Pectin/PVA Nanofibers Using Electrospinning Technique. Nanoscience and Nanotechnology - Asia, 2020, 10, 134-141.	0.3	5
17	Fabrication and Characterization of Gelatin Electrospun Fiber Containing Cardamom Essential Oil. Nanoscience and Nanotechnology - Asia, 2020, 10, 292-305.	0.3	4
18	Class II Hydrophobin HFBII: A Potential Carrier for Antitumor Agents. Current Bioactive Compounds, 2020, 16, 80-84.	0.2	1

#	Article	IF	Citations
19	Meet Our Associate Editorial Advisory Board Member. Nanoscience and Nanotechnology - Asia, 2020, 10, 733-733.	0.3	0
20	Gum arabic improves the mechanical properties of wild almond protein film. Carbohydrate Polymers, 2019, 222, 114994.	5.1	20
21	Biological detoxification of ochratoxin A in plants and plant products. Toxin Reviews, 2019, 38, 187-199.	1.5	16
22	Fabrication of Electrospun Persian Gum/Poly (Vinyl Alcohol) and Whey Protein Isolate/Poly (Vinyl) Tj ETQq0 0 0 rg	gBT /Overl 0.3	ock 10 Tf 50 6
23	Kinetics Study of Protein Hydrolysis and Inhibition of Angiotensin Converting Enzyme by Peptides Hydrolysate Extracted from Walnut. International Journal of Peptide Research and Therapeutics, 2018, 24, 77-85.	0.9	20
24	Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends in Food Science and Technology, 2017, 62, 49-58.	7.8	100
25	Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei. International Journal of Biological Macromolecules, 2016, 91, 174-179.	3.6	17
26	ACE- inhibitory and radical scavenging activities of bioactive peptides obtained from camel milk casein hydrolysis with proteinase K. Dairy Science and Technology, 2016, 96, 489-499.	2.2	36
27	<i>Trichoderma reesei</i> , a superior cellulase source for industrial applications. Biofuels, 2016, 7, 713-721.	1.4	13
28	Hydrophobin purification based on the theory of CO ₂ -nanobubbles. Journal of Liquid Chromatography and Related Technologies, 2016, 39, 111-118.	0.5	9
29	Upgraded Model of Primary Gushing: From Nanobubble Formation until Liquid Expulsion. Journal of the American Society of Brewing Chemists, 2015, 73, 343-346.	0.8	9
30	Improvement of the retention of ocimene in water phase using Class II hydrophobin HFBII. Flavour and Fragrance Journal, 2015, 30, 451-458.	1.2	14
31	Ochratoxin A in liquorice products – a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1-7.	1.1	6
32	Recent Advances in Fungal Hydrophobin Towards Using in Industry. Protein Journal, 2015, 34, 243-255.	0.7	53
33	Fungal biofilm reactor improves the productivity of hydrophobin HFBII. Biochemical Engineering Journal, 2014, 88, 171-178.	1.8	32
34	Conserved Class of Queen Pheromones Stops Social Insect Workers from Reproducing. Science, 2014, 343, 287-290.	6.0	298
35	Biophysical characterisation of hydrophobin enriched foamate. Cerevisia, 2014, 38, 129-134.	0.4	11
36	The effects of temperature and relative humidity on ochratoxin A formation in fresh liquorice root. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 339-344.	1.1	12

#	Article	IF	CITATIONS
37	A novel method for hydrophobin extraction using CO2 foam fractionation system. Industrial Crops and Products, 2013, 43, 372-377.	2.5	35
38	Effect of the mashing process on the performance of a lipophilic hop extract to reduce the primary gushing of beer. Cerevisia, 2013, 38, 71-76.	0.4	5
39	Thermodynamic View of Primary Gushing. Journal of the American Society of Brewing Chemists, 2013, 71, 149-152.	0.8	8
40	Combined Modeling and Biophysical Characterisation of CO ₂ Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. Journal of the American Society of Brewing Chemists, 2012, 70, 249-256.	0.8	23
41	Hydrophobins: Exceptional proteins for many applications in brewery environment and other bio-industries. Cerevisia, 2012, 37, 3-9.	0.4	34
42	The effects of different ecophysiological factors on ochratoxin A production. Environmental Toxicology and Pharmacology, 2011, 32, 113-121.	2.0	34
43	Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta, 2011, 83, 988-993.	2.9	59