Kevin R Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 2022, 220, .	1.2	133
2	Efficiently Summarizing Relationships in Large Samples: A General Duality Between Statistics of Genealogies and Genomes. Genetics, 2020, 215, 779-797.	1.2	51
3	Polygenic Adaptation to an Environmental Shift: Temporal Dynamics of Variation Under Gaussian Stabilizing Selection and Additive Effects on a Single Trait. Genetics, 2019, 213, 1513-1530.	1.2	49
4	Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 151-156.	3.3	90
5	Efficient pedigree recording for fast population genetics simulation. PLoS Computational Biology, 2018, 14, e1006581.	1.5	130
6	Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. PLoS Genetics, 2018, 14, e1007794.	1.5	48
7	Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. PLoS Genetics, 2017, 13, e1006795.	1.5	53
8	A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets. PLoS Genetics, 2017, 13, e1006573.	1.5	31
9	Efficient Software for Multi-marker, Region-Based Analysis of GWAS Data. G3: Genes, Genomes, Genetics, 2016, 6, 1023-1030.	0.8	6
10	Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans. PLoS ONE, 2015, 10, e0132184.	1.1	25
11	Gene Expression Variation in <i>Drosophila melanogaster</i> Due to Rare Transposable Element Insertion Alleles of Large Effect. Genetics, 2015, 199, 85-93.	1.2	45
12	The Power to Detect Quantitative Trait Loci Using Resequenced, Experimentally Evolved Populations of Diploid, Sexual Organisms. Molecular Biology and Evolution, 2014, 31, 1040-1055.	3.5	88
13	A C++ Template Library for Efficient Forward-Time Population Genetic Simulation of Large Populations. Genetics, 2014, 198, 157-166.	1.2	78
14	Revised Annotations, Sex-Biased Expression, and Lineage-Specific Genes in the <i>Drosophila melanogaster</i> Group. G3: Genes, Genomes, Genetics, 2014, 4, 2345-2351.	0.8	17
15	Landscape of Standing Variation for Tandem Duplications in Drosophila yakuba and Drosophila simulans. Molecular Biology and Evolution, 2014, 31, 1750-1766.	3.5	89
16	A second-generation assembly of the <i>Drosophila simulans</i> genome provides new insights into patterns of lineage-specific divergence. Genome Research, 2013, 23, 89-98.	2.4	157
17	Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect. PLoS Genetics, 2013, 9, e1003258.	1.5	72
18	Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources. Molecular Biology and Evolution, 2013, 30, 2311-2327.	3.5	118

KEVIN R THORNTON

#	Article	IF	CITATIONS
19	The Drosophila melanogaster Genetic Reference Panel. Nature, 2012, 482, 173-178.	13.7	1,756
20	Genome sequencing reveals complex speciation in the <i>Drosophila simulans</i> clade. Genome Research, 2012, 22, 1499-1511.	2.4	220
21	Experiments with the Site Frequency Spectrum. Bulletin of Mathematical Biology, 2011, 73, 829-872.	0.9	11
22	Validation of Rearrangement Break Points Identified by Paired-End Sequencing in Natural Populations of Drosophila melanogaster. Genome Biology and Evolution, 2010, 2, 83-101.	1.1	46
23	Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 2010, 467, 587-590.	13.7	410
24	Characterizing natural variation using next-generation sequencing technologies. Trends in Genetics, 2009, 25, 463-471.	2.9	116
25	Automating approximate Bayesian computation by local linear regression. BMC Genetics, 2009, 10, 35.	2.7	33
26	Inferring Selection in Partially Sequenced Regions. Molecular Biology and Evolution, 2008, 25, 438-446.	3.5	13
27	An Approximate Bayesian Estimator Suggests Strong, Recurrent Selective Sweeps in Drosophila. PLoS Genetics, 2008, 4, e1000198.	1.5	94
28	Controlling the False-Positive Rate in Multilocus Genome Scans for Selection. Genetics, 2007, 175, 737-750.	1.2	163
29	The Neutral Coalescent Process for Recent Gene Duplications and Copy-Number Variants. Genetics, 2007, 177, 987-1000.	1.2	26
30	On the Utility of Linkage Disequilibrium as a Statistic for Identifying Targets of Positive Selection in Nonequilibrium Populations. Genetics, 2007, 176, 2371-2379.	1.2	84
31	A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. PLoS Biology, 2007, 5, e171.	2.6	413
32	Progress and prospects in mapping recent selection in the genome. Heredity, 2007, 98, 340-348.	1.2	121
33	EXTENSIVE INTROGRESSION OF MITOCHONDRIAL DNA RELATIVE TO NUCLEAR GENES IN THE DROSOPHILA YAKUBA SPECIES GROUP. Evolution; International Journal of Organic Evolution, 2006, 60, 292.	1.1	4
34	EXTENSIVE INTROGRESSION OF MITOCHONDRIAL DNA RELATIVE TO NUCLEAR GENES IN THE DROSOPHILA YAKUBA SPECIES GROUP. Evolution; International Journal of Organic Evolution, 2006, 60, 292-302.	1.1	187
35	Approximate Bayesian Inference Reveals Evidence for a Recent, Severe Bottleneck in a Netherlands Population of Drosophila melanogaster. Genetics, 2006, 172, 1607-1619.	1.2	239
36	X chromosomes and autosomes evolve at similar rates in Drosophila: No evidence for faster-X protein evolution. Genome Research, 2006, 16, 498-504.	2.4	67

KEVIN R THORNTON

#	Article	lF	CITATIONS
37	Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution; International Journal of Organic Evolution, 2006, 60, 292-302.	1.1	69
38	Recombination and the Properties of Tajima's D in the Context of Approximate-Likelihood Calculation. Genetics, 2005, 171, 2143-2148.	1.2	35
39	Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 2005, 15, 1-18.	2.4	453
40	Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. Genome Research, 2005, 15, 790-799.	2.4	247
41	Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. Genome Research, 2005, 16, 173-181.	2.4	48
42	Excess of Amino Acid Substitutions Relative to Polymorphism Between X-Linked Duplications in Drosophila melanogaster. Molecular Biology and Evolution, 2004, 22, 273-284.	3.5	46
43	Nucleotide Variation and Recombination Along the Fourth Chromosome in Drosophila simulans. Genetics, 2004, 166, 1783-1794.	1.2	25
44	Nucleotide Variation and Recombination Along the Fourth Chromosome in <i>Drosophila simulans</i> . Genetics, 2004, 166, 1783-1794.	1.2	13
45	The origin of new genes: glimpses from the young and old. Nature Reviews Genetics, 2003, 4, 865-875.	7.7	775
46	libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics, 2003, 19, 2325-2327.	1.8	307
47	Nucleotide Variation Along the Drosophila melanogaster Fourth Chromosome. Science, 2002, 295, 134-137.	6.0	81
48	Rapid Divergence of Gene Duplicates on the Drosophila melanogaster X Chromosome. Molecular Biology and Evolution, 2002, 19, 918-925.	3.5	83
49	Retroposed New Genes Out of the X in Drosophila. Genome Research, 2002, 12, 1854-1859.	2.4	399
50	Retroposed New Genes Out of the X in <i>Drosophila</i> . Genome Research, 2002, 12, 1854-1859.	2.4	99
51	Gene Duplication and Evolution. Science, 2001, 293, 1551a-1551.	6.0	103