Luciana Tartaglione

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7536273/luciana-tartaglione-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

59	2,593	29	50
papers	citations	h-index	g-index
61	2,931 ext. citations	5.4	4.44
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
59	CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. <i>Water Research</i> , 2021 , 196, 117017	12.5	37
58	Massive Occurrence of the Harmful Benthic Dinoflagellate cf. in the Eastern Adriatic Sea. <i>Toxins</i> , 2019 , 11,	4.9	11
57	First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. <i>Chemosphere</i> , 2019 , 215, 881-892	8.4	30
56	Plastic-associated harmful microalgal assemblages in marine environment. <i>Environmental Pollution</i> , 2019 , 244, 617-626	9.3	34
55	NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity. <i>Floterap</i> [12018 , 125, 13-17	3.2	12
54	Role of temperature and nutrients on the growth and toxin production of Prorocentrum hoffmannianum (Dinophyceae) from the Florida Keys. <i>Harmful Algae</i> , 2018 , 80, 140-148	5.3	9
53	Mass Spectrometry B ased Methods for the Structural Characterization of Marine Toxins. <i>Comprehensive Analytical Chemistry</i> , 2017 , 193-209	1.9	1
52	Influence of environmental factors on the toxin production of Ostreopsis cf. ovata during bloom events. <i>Marine Pollution Bulletin</i> , 2017 , 123, 261-268	6.7	13
51	Variability in Toxin Profiles of the Mediterranean Ostreopsis cf. ovata and in Structural Features of the Produced Ovatoxins. <i>Environmental Science & Environmental Science &</i>	10.3	24
50	Toxin Variability Estimations of 68 Alexandrium ostenfeldii (Dinophyceae) Strains from The Netherlands Reveal a Novel Abundant Gymnodimine. <i>Microorganisms</i> , 2017 , 5,	4.9	17
49	An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. <i>Toxicon</i> , 2016 , 121, 41-50	2.8	14
48	Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea. <i>Journal of Phycology</i> , 2016 , 52, 1064-1084	3	47
47	Ostreopsis cf. ovata from western Mediterranean Sea: Physiological responses under different temperature and salinity conditions. <i>Harmful Algae</i> , 2016 , 57, 98-108	5.3	16
46	Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: structural insights into four new ovatoxins by LC-HRMS/MS. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 915-32	4.4	36
45	Ovatoxin-a, A Palytoxin Analogue Isolated from Ostreopsis cf. ovata Fukuyo: Cytotoxic Activity and ELISA Detection. <i>Environmental Science & ELISA Detection</i> . 2016, 50, 1544-51	10.3	23
44	Determination of Palytoxins in Soft Coral and Seawater from a Home Aquarium. Comparison between Palythoa- and Ostreopsis-Related Inhalatory Poisonings. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 1023-30	10.3	11
43	Effects of N and P availability on carbon allocation in the toxic dinoflagellate Ostreopsis cf. ovata. <i>Harmful Algae</i> , 2016 , 55, 202-212	5.3	13

(2012-2015)

42	(1S,3R,4S,5R)5-O-Caffeoylquinic acid: isolation, stereo-structure characterization and biological activity. <i>Food Chemistry</i> , 2015 , 178, 306-10	8.5	20	
41	Liquid chromatography-high-resolution mass spectrometry for palytoxins in mussels. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 1463-73	4.4	27	
40	The sxt Gene and Paralytic Shellfish Poisoning Toxins as Markers for the Monitoring of Toxic Alexandrium Species Blooms. <i>Environmental Science & Environmental Science & Envi</i>	10.3	18	
39	The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MS(n.). <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 1191-204	4.4	57	
38	Marine Toxins in Italy: The More You Look, the More You Find. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 1357-1369	3.2	18	
37	Growth dynamics in relation to the production of the main cellular components in the toxic dinoflagellate Ostreopsis cf. ovata. <i>Harmful Algae</i> , 2014 , 36, 1-10	5.3	26	
36	Identification of palytoxin-Ca2+ complex by NMR and molecular modeling techniques. <i>Journal of Organic Chemistry</i> , 2014 , 79, 72-9	4.2	5	
35	First finding of Ostreopsis cf. ovata toxins in marine aerosols. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	83	
34	Stereoisomers of 42-hydroxy palytoxin from Hawaiian Palythoa toxica and P. tuberculosa: stereostructure elucidation, detection, and biological activities. <i>Journal of Natural Products</i> , 2014 , 77, 351-7	4.9	22	
33	SxtA and sxtG gene expression and toxin production in the Mediterranean Alexandrium minutum (Dinophyceae). <i>Marine Drugs</i> , 2014 , 12, 5258-76	6	27	
32	Investigation of toxin profile of Mediterranean and Atlantic strains of Ostreopsis cf. siamensis (Dinophyceae) by liquid chromatographyligh resolution mass spectrometry. <i>Harmful Algae</i> , 2013 , 23, 19-27	5.3	49	
31	Toxin-producing Ostreopsis cf. ovata are likely to bloom undetected along coastal areas. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	51	
30	Stereochemical studies on ovatoxin-a. <i>Chemistry - A European Journal</i> , 2012 , 18, 16836-43	4.8	15	
29	Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1869-75	16.4	99	
28	Influence of temperature and salinity on Ostreopsis cf. ovata growth and evaluation of toxin content through HR LC-MS and biological assays. <i>Water Research</i> , 2012 , 46, 82-92	12.5	83	
27	Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS(n) characterization of ovatoxin-f, a new palytoxin congener. <i>Chemical Research in Toxicology</i> , 2012 , 25, 1243-52	4	84	
26	Nitrogen and phosphorus limitation effects on cell growth, biovolume, and toxin production in Ostreopsis cf. ovata. <i>Harmful Algae</i> , 2012 , 15, 78-90	5.3	59	
25	Biogeographic effects of the Gulf of Mexico red tide dinoflagellate Karenia brevis on Mediterranean copepods. <i>Harmful Algae</i> , 2012 , 16, 63-73	5.3	13	

24	Palytoxin and an Ostreopsis toxin extract increase the levels of mRNAs encoding inflammation-related proteins in human macrophages via p38 MAPK and NF- B . <i>PLoS ONE</i> , 2012 , 7, e381	397	29
23	Toxin levels and profiles in microalgae from the north-Western Adriatic Sea15 years of studies on cultured species. <i>Marine Drugs</i> , 2012 , 10, 140-62	6	71
22	High resolution LC-MS(n) fragmentation pattern of palytoxin as template to gain new insights into ovatoxin-a structure. The key role of calcium in MS behavior of palytoxins. <i>Journal of the American Society for Mass Spectrometry</i> , 2012 , 23, 952-63	3.5	33
21	A 4-decade-long (and still ongoing) hunt for palytoxins chemical architecture. <i>Toxicon</i> , 2011 , 57, 362-7	2.8	23
20	LC-MS of palytoxin and its analogues: State of the art and future perspectives. <i>Toxicon</i> , 2011 , 57, 376-8	92.8	8o
19	Ostreopsis cf. ovata bloom in the northern Adriatic Sea during summer 2009: ecology, molecular characterization and toxin profile. <i>Marine Pollution Bulletin</i> , 2011 , 62, 2512-9	6.7	78
18	Palytoxin in seafood by liquid chromatography tandem mass spectrometry: investigation of extraction efficiency and matrix effect. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 1043-50	4.4	25
17	Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. <i>Toxicon</i> , 2010 , 55, 211-20	2.8	109
16	Complex toxin profile of Mytilus galloprovincialis from the Adriatic sea revealed by LC-MS. <i>Toxicon</i> , 2010 , 55, 280-8	2.8	32
15	Characterization of 27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin profile. <i>Toxicon</i> , 2010 , 56, 1327	7- 3 3	29
14	Complex palytoxin-like profile of Ostreopsis ovata. Identification of four new ovatoxins by high-resolution liquid chromatography/mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 2735-44	2.2	119
13	Stereostructure and biological activity of 42-hydroxy-palytoxin: a new palytoxin analogue from Hawaiian Palythoa subspecies. <i>Chemical Research in Toxicology</i> , 2009 , 22, 1851-9	4	72
12	Gonyaulax spinifera from the Adriatic sea: Toxin production and phylogenetic analysis. <i>Harmful Algae</i> , 2009 , 8, 279-290	5.3	45
11	Full relative stereochemistry assignment and conformational analysis of 13,19-didesmethyl spirolide C via NMR- and molecular modeling-based techniques. A step towards understanding spirolidels mechanism of action. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 3674-81	3.9	13
10	Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. <i>Journal of the American Society for Mass Spectrometry</i> , 2008 , 19, 111-20	3.5	171
9	Spirolide toxin profile of Adriatic Alexandrium ostenfeldii cultures and structure elucidation of 27-hydroxy-13,19-didesmethyl spirolide C. <i>Journal of Natural Products</i> , 2007 , 70, 1878-83	4.9	44
8	Desulfoyessotoxins from Adriatic mussels: a new problem for seafood safety control. <i>Chemical Research in Toxicology</i> , 2007 , 20, 95-8	4	21
7	Influence of temperature, salinity and nutrient limitation on yessotoxin production and release by the dinoflagellate Protoceratium reticulatum in batch-cultures. <i>Harmful Algae</i> , 2007 , 6, 707-717	5.3	48

LIST OF PUBLICATIONS

6	Stereostructural Determination by a Synthetic and NMR-Based Approach of Three Oxazinins Isolated from Adriatic Mussels. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 5434-5439	3.2	11
5	The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. <i>Analytical Chemistry</i> , 2006 , 78, 6153-9	7.8	215
4	Toxin profile of Alexandrium ostenfeldii (Dinophyceae) from the Northern Adriatic Sea revealed by liquid chromatography-mass spectrometry. <i>Toxicon</i> , 2006 , 47, 597-604	2.8	76
3	The alternation of different morphotypes in the seasonal cycle of the toxic diatom Pseudo-nitzschia galaxiae. <i>Harmful Algae</i> , 2005 , 4, 33-48	5.3	80
2	Hydrophilic interaction liquid chromatography/mass spectrometry for determination of domoic acid in Adriatic shellfish. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 2030-8	2.2	53
1	Comprehensive database of secondary metabolites from cyanobacteria		11