Jose Sanchez-Dehesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536155/publications.pdf

Version: 2024-02-01

191 papers 7,505 citations

47006 47 h-index 81 g-index

197 all docs

197
docs citations

197 times ranked 3735 citing authors

#	Article	IF	CITATIONS
1	Experimental evidence of the Poisson-like effect for flexural waves in thin metallic plates. Applied Physics Letters, 2022, 120, 094102.	3.3	1
2	Experimental evidence of a hiding zone in a density-near-zero acoustic metamaterial. Journal of Applied Physics, 2021, 129, 145101.	2.5	5
3	Viscothermal Effects in a Two-Dimensional Acoustic Black Hole: A Boundary Element Approach. Physical Review Applied, 2021, 15, .	3.8	6
4	Effective transport properties for periodic multiphase fiber-reinforced composites with complex constituents and parallelogram unit cells. International Journal of Solids and Structures, 2020, 204-205, 96-113.	2.7	3
5	Aerogel-based metasurfaces for perfect acoustic energy absorption. Applied Physics Letters, 2019, 115, .	3.3	31
6	Majorana-like Zero Modes in Kekulé Distorted Sonic Lattices. Physical Review Letters, 2019, 123, 196601.	7.8	55
7	Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders. Materials, 2019, 12, 2806.	2.9	14
8	Zero-phase propagation in realistic plate-type acoustic metamaterials. Applied Physics Letters, 2019, 115,	3.3	11
9	Simple closed-form property expressions of a metafluid composed of a hexagonal array of transversely isotropic elastic fibres embedded in an ideal fluid. Mechanics Research Communications, 2019, 99, 47-51.	1.8	1
10	Experimental Evidence of Rainbow Trapping and Bloch Oscillations of Torsional Waves in Chirped Metallic Beams. Scientific Reports, 2019, 9, 1860.	3.3	19
11	Single-phase metamaterial plates for broadband vibration suppression at low frequencies. Journal of Sound and Vibration, 2019, 444, 108-126.	3.9	55
12	Theoretical study of platonic crystals with periodically structured $\langle i \rangle N \langle i \rangle$ -beam resonators. Journal of Applied Physics, 2018, 123, .	2.5	19
13	Acoustic cloak based on Bézier scatterers. Scientific Reports, 2018, 8, 12924.	3.3	23
14	Poisson-like effect for flexural waves in periodically perforated thin plates. Journal of the Acoustical Society of America, 2018, 144, 1053-1058.	1.1	6
15	Acoustic characterization of silica aerogel clamped plates for perfect absorption. Journal of Non-Crystalline Solids, 2018, 499, 283-288.	3.1	13
16	A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses. Journal of Computational Acoustics, 2017, 25, 1750006.	1.0	23
17	Viscothermal Losses in Double-Negative Acoustic Metamaterials. Physical Review Applied, 2017, 8, .	3.8	47
18	Scattering of flexural waves from an <i>N</i> -beam resonator in a thin plate. Journal of the Acoustical Society of America, 2017, 142, 3205-3215.	1.1	23

#	Article	IF	CITATIONS
19	Redirection and Splitting of Sound Waves by a Periodic Chain of Thin Perforated Cylindrical Shells. Physical Review Applied, 2017, 7, .	3.8	4
20	Analysis of flexural wave cloaks. AIP Advances, 2016, 6, .	1.3	15
21	On the origin of pure optical rotation in twisted-cross metamaterials. Scientific Reports, 2016, 6, 30307.	3.3	5
22	Aerogel as a Soft Acoustic Metamaterial for Airborne Sound. Physical Review Applied, 2016, 5, .	3.8	27
23	Introduction to Acoustics of Phononic Crystals. Homogenization at Low Frequencies., 2016,, 1-21.		0
24	Broadband Acoustic Cloaking within an Arbitrary Hard Cavity. Physical Review Applied, 2015, 3, .	3.8	31
25	Transparent Gradient-Index Lens for Underwater Sound Based on Phase Advance. Physical Review Applied, 2015, 4, .	3.8	32
26	Wood anomalies in lattices of cylindrical perforated shells. , 2015, , .		1
27	Beyond Anderson localization: Anomalous transmission of waves through media with Lévy disorder., 2015,,.		0
28	Total absorption by a low-loss dielectric thin layer on top of a metallic metasurface., 2015,,.		0
29	Scattering of flexural waves from a hole in a thin plate with an internal beam. Journal of the Acoustical Society of America, 2015, 137, 293-302.	1.1	8
30	Acoustic metamaterial absorbers based on multilayered sonic crystals. Journal of Applied Physics, 2015, 117, .	2.5	38
31	Experimental verification of total absorption by a low-loss thin dielectric layer. Applied Physics Letters, 2015, 106, .	3.3	4
32	Anomalous sound absorption in lattices of cylindrical perforated shells. Applied Physics Letters, 2015, 106, .	3.3	10
33	Redirection of sound in straight fluid channel with elastic boundaries. Physical Review B, 2015, 91, .	3.2	6
34	Spatial sorting and routing of electromagnetic waves based on polarization control., 2014,,.		0
35	Preface to Special Topic: Selected Articles from Phononics 2013: The Second International Conference on Phononic Crystals/Metamaterials, Phonon Transport and Optomechanics, 2-7 June 2013, Sharm El-Sheikh, Egypt. AIP Advances, 2014, 4, .	1.3	3
36	Enhanced inertia from lossy effective fluids using multi-scale sonic crystals. AIP Advances, 2014, 4, .	1.3	14

#	Article	IF	Citations
37	Experimental evidence of super-resolution better than $\langle i \rangle \hat{l} \rangle \langle i \rangle /105$ with positive refraction. New Journal of Physics, 2014, 16, 033015.	2.9	16
38	Directive excitation of guided electromagnetic waves through polarization control. Physical Review B, 2014, 89, .	3.2	5
39	Beyond Anderson Localization in 1D: Anomalous Localization of Microwaves in Random Waveguides. Physical Review Letters, 2014, 113, 233901.	7.8	30
40	Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters, 2014, 105, .	3.3	107
41	Extraordinary absorption by a thin dielectric slab backed with a metasurface. Physical Review B, 2014, 89, .	3.2	6
42	Quasi-two-dimensional acoustic metamaterials. , 2014, , .		0
43	Space–time transformation acoustics. Wave Motion, 2014, 51, 785-797.	2.0	14
44	Transformational acoustic metamaterials based on pressure gradients. Physical Review B, 2014, 90, .	3.2	4
45	Negative Refraction and Energy Funneling by Hyperbolic Materials: An Experimental Demonstration in Acoustics. Physical Review Letters, 2014, 112, 144301.	7.8	145
46	Wireless energy transfer between anisotropic metamaterials shells. Annals of Physics, 2014, 345, 55-62.	2.8	1
47	Analogue transformation acoustics and the compression of spacetime. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 312-318.	2.0	9
48	Radial Photonic Crystal Shells and Their Application as Resonant and Radiating Elements. IEEE Transactions on Antennas and Propagation, 2013, 61, 755-767.	5.1	16
49	Low-Qwhispering gallery modes in anisotropic metamaterial shells. Physical Review B, 2013, 88, .	3.2	2
50	Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 2013, 3, 2009.	3.3	39
51	Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 2013, 110, 124301.	7.8	138
52	Acoustic Cloaking via Homogenization. Springer Series in Materials Science, 2013, , 219-239.	0.6	0
53	Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B, 2013, 87, .	3.2	140
54	Optimum control of broadband noise by arrays of cylindrical units made of a recycled material. Applied Acoustics, 2013, 74, 58-62.	3.3	20

#	Article	IF	Citations
55	Omnidirectional broadband flexural focusing structure. , 2013, , .		О
56	Elastic analogue of graphene: Dirac cones and edge states in the propagation of flexural waves in thin plates. , $2013, , .$		1
57	Metamaterial shells based on radial photonic crystals: Theory and applications. , 2013, , .		0
58	Analogue transformation acoustics: Generalizing transformation techniques to non-form-invariant equations. , 2013 , , .		1
59	Negative mass density and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ï</mml:mi>-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B, 2013, 88, .</mml:math 	3.2	64
60	Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 2013, 114, .	2.5	32
61	Noise attenuation by sonic crystal barriers made of microperforated units. Proceedings of Meetings on Acoustics, $2013, \ldots$	0.3	0
62	Negative and density-near-zero acoustic metamaterials based on quasi-two-dimensional phononic crystals Proceedings of Meetings on Acoustics, 2013 , , .	0.3	0
63	Experimental demonstration of a three-dimensional acoustic cloak based on a cancellation effect. Proceedings of Meetings on Acoustics, 2013, , .	0.3	O
64	Analysis of equivalent anisotropy arising from dual isotropic layers of acoustic media. Journal of the Acoustical Society of America, 2012, 132, 2915-2922.	1.1	1
65	Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid. Journal of the Acoustical Society of America, 2012, 132, 2896-2908.	1.1	16
66	Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells. New Journal of Physics, 2012, 14, 103052.	2.9	24
67	Reduced acoustic cloaks based on temperature gradients. Applied Physics Letters, 2012, 101, 084103.	3.3	14
68	Modulation of electromagnic waves by alternating currents through left-handed ferromagnetic microwires. Journal of Applied Physics, 2012, 111 , .	2.5	8
69	Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 2012, 100, .	3.3	143
70	Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 2012, 101, .	3.3	81
71	Anisotropic metamaterials as sensing devices in acoustics and electromagnetism. Proceedings of SPIE, 2012, , .	0.8	3
72	Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports, 2012, 2, 558.	3.3	15

#	Article	IF	CITATIONS
73	Super resolution using a modified Spherical Geodesic Waveguide suitable for manufacturing. Proceedings of SPIE, 2012, , .	0.8	0
74	Quasi-two-dimensional acoustic metamaterial with negative bulk modulus. Physical Review B, 2012, 85, .	3.2	71
75	Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission. Journal of the Acoustical Society of America, 2012, 132, 2807-2815.	1.1	4
76	Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves. Physical Review Letters, 2012, 108, 174301.	7.8	135
77	Acoustic cloak for airborne sound by inverse design. Applied Physics Letters, 2011, 99, .	3.3	72
78	Noise control by sonic crystal barriers made of recycled materials. Journal of the Acoustical Society of America, 2011, 129, 1173-1183.	1.1	91
79	Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 2011, 98, .	3.3	23
80	Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 2011, 13, 093018.	2.9	38
81	Electromagnetic absorption in anisotropic photonic crystal of alumina cylinders. Metamaterials, 2011, 5, 74-80.	2.2	1
82	Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates. AIP Advances, $2011, 1, \ldots$	1.3	4
83	Broadband acoustic cloaks based on the homogenization of layered materials. Wave Motion, 2011, 48, 497-504.	2.0	25
84	Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics, 2011, 13, 103034.	2.9	12
85	Acoustic metamaterials based on the homogenization of periodic scatterers. Proceedings of SPIE, 2011, , .	0.8	0
86	Sonic gradient index lens for aqueous applications. Applied Physics Letters, 2010, 97, .	3.3	133
87	Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 2010, 97, 231122.	3.3	11
88	Sound focusing by gradient index sonic lenses. Applied Physics Letters, 2010, 97, .	3.3	175
89	Left handed material based on amorphous ferromagnetic microwires tunable by dc current. Applied Physics Letters, 2010, 97, .	3.3	32
90	Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 2010, 12, 073034.	2.9	55

#	Article	IF	Citations
91	Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 2010, 105, 174301.	7.8	105
92	Double negative metamaterials based on ferromagnetic microwires. Physical Review B, 2010, 81, .	3.2	57
93	Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Applied Physics Letters, 2009, 94, .	3.3	36
94	Quenching of acoustic bandgaps by flow noise. Applied Physics Letters, 2009, 94, .	3.3	38
95	Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 2009, 103, 064301.	7.8	82
96	Acoustic transparency in two-dimensional sonic crystals. New Journal of Physics, 2009, 11, 013039.	2.9	8
97	Sound scattering by anisotropic metafluids based on two-dimensional sonic crystals. Physical Review B, 2009, 79, .	3.2	18
98	Sound control by temperature gradients. Applied Physics Letters, 2009, 95, 204102.	3.3	10
99	Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 2008, 10, 063015.	2.9	343
100	Acoustical scattering by radially stratified scatterers. Journal of the Acoustical Society of America, 2008, 124, 2715-2726.	1.1	31
101	Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 2008, 10, 023004.	2.9	163
102	Electromagnetic beaming from omnidirectional sources by inverse design. Applied Physics Letters, 2008, 92, 051105.	3.3	1
103	Analysis of Cummer–Schurig acoustic cloaking. New Journal of Physics, 2007, 9, 450-450.	2.9	71
104	Evidence of two-dimensional magic clusters in the scattering of sound. Physical Review B, 2007, 75, .	3.2	14
105	Highly/directional sources by periodic and non-periodic dielectric rods. , 2007, , .		0
106	Microlens array for focusing airborne ultrasound using heated wire grid. Applied Physics Letters, 2007, 91, .	3.3	6
107	Directional acoustic source by scattering acoustical elements. Applied Physics Letters, 2007, 90, 224107.	3.3	20
108	Scattering Optical Elements: Towards complete control of light propagation on the wavelength scale. , 2007, , .		0

#	Article	IF	CITATIONS
109	Inverse design beyond photonic crystals: an introduction to scattering optical elements., 2007,,.		О
110	Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy. Optics Express, 2007, 15, 704.	3.4	13
111	Acoustic Analogue of Electronic Bloch Oscillations and Resonant Zener Tunneling in Ultrasonic Superlattices. Physical Review Letters, 2007, 98, 134301.	7.8	115
112	Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 2007, 9, 323-323.	2.9	213
113	Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 79-85.	2.0	6
114	Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Physical Review B, 2006, 74, .	3.2	94
115	Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 2006, 96, 204302.	7.8	120
116	Proposals of inverse designed microscaled scattering optical elements. , 2006, 6182, 284.		0
117	Experimental realization of sonic demultiplexing devices based on inverse designed scattering acoustic elements. Applied Physics Letters, 2006, 88, 163506.	3.3	9
118	Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders. Physical Review B, 2006, 74, .	3.2	41
119	Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements. Physical Review Letters, 2006, 96, 153902.	7.8	23
120	Optimal design of microscaled scattering optical elements. Applied Physics Letters, 2005, 87, 193506.	3.3	10
121	Comment on "Theory of tailoring sonic devices: Diffraction dominates over refraction― Physical Review E, 2005, 71, 018601; discussion 018602.	2.1	4
122	Sound propagation in the time-domain by the Split-Operator technique. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	1
123	High-efficiency defect-based photonic-crystal tapers designed by a genetic algorithm. Journal of Lightwave Technology, 2005, 23, 3881-3888.	4.6	23
124	Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes. Optics Express, 2005, 13, 4160.	3.4	22
125	Inverse designed photonic crystal de-multiplex waveguide coupler. Optics Express, 2005, 13, 5440.	3.4	34
126	Inverse design of photonic crystal devices. IEEE Journal on Selected Areas in Communications, 2005, 23, 1365-1371.	14.0	31

#	Article	IF	Citations
127	Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters, 2005, 86, 054102.	3.3	61
128	Integrated optical devices design by genetic algorithm. Applied Physics Letters, 2004, 84, 4460-4462.	3.3	105
129	Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems. Applied Physics Letters, 2004, 85, 154-156.	3.3	34
130	Template assisted fabrication technique towards Si-inverse opals with diamond structure. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 59-63.	2.0	5
131	Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures. Physical Review B, 2004, 70, .	3.2	45
132	Acoustic lens design by genetic algorithms. Physical Review B, 2004, 70, .	3.2	63
133	Inverse design of photonic devices by using a genetic algorithm. , 2004, , .		1
134	Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials. Physical Review B, 2003, 67, .	3.2	189
135	Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air. Physical Review B, 2003, 67, .	3.2	70
136	Photonic crystal microprisms obtained by carving artificial opals. Journal of Applied Physics, 2003, 93, 671-674.	2.5	13
137	Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals. Applied Physics Letters, 2003, 82, 4068-4070.	3.3	67
138	Anomalous refractive properties of a two-dimensional photonic band-gap prism. Physical Review B, 2003, 67, .	3.2	18
139	Localized defect modes in finite metallic two-dimensional photonic crystals. Physical Review B, 2002, 65, .	3.2	23
140	Symmetry characterization of eigenstates in opal-based photonic crystals. Physical Review B, 2002, 65, .	3.2	56
141	Optical study of the full photonic band gap in silicon inverse opals. Applied Physics Letters, 2002, 81, 4925-4927.	3.3	49
142	Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials. Physical Review Letters, 2002, 88, 225502.	7.8	314
143	Antimony Trisulfide Inverted Opals: Growth, Characterization, and Photonic Properties. Advanced Materials, 2002, 14, 1486-1490.	21.0	38
144	Do hysteresis effects occur in self-consistent electronic levels of quantum wires?. Superlattices and Microstructures, 2002, 31, 257-267.	3.1	1

#	Article	lF	CITATIONS
145	Superprism effect in opal-based photonic crystals. Physical Review B, 2001, 64, .	3.2	65
146	Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 2001, 88, 023902.	7.8	245
147	Opal-like photonic crystal with diamond lattice. Applied Physics Letters, 2001, 79, 2309-2311.	3.3	59
148	Suzuki phase in two-dimensional sonic crystals. Physical Review B, 2001, 64, .	3.2	32
149	Synthesis and Photonic Bandgap Characterization of Polymer Inverse Opals. Advanced Materials, 2001, 13, 393-396.	21.0	101
150	Reflectance properties of two-dimensional sonic band-gap crystals. Journal of the Acoustical Society of America, 2001, 109, 2598-2605.	1.1	51
151	Photonic band gap properties of CdS-in-opal systems. Applied Physics Letters, 2001, 78, 3181-3183.	3.3	40
152	Inverse Opals Fabrication. , 2001, , 219-227.		0
153	Electronic Levels of Quantum Dots: A Variational Approach. Journal of the Physical Society of Japan, 2000, 69, 3904-3911.	1.6	3
154	Large two-dimensional sonic band gaps. Physical Review E, 1999, 60, R6316-R6319.	2.1	145
155	Face centered cubic photonic bandgap materials based on opal-semiconductor composites. Journal of Lightwave Technology, 1999, 17, 1975-1981.	4.6	24
156	Localized surface plasmons in lamellar metallic gratings. Journal of Lightwave Technology, 1999, 17, 2191-2195.	4.6	80
157	Two-dimensional elastic bandgap crystal to attenuate surface waves. Journal of Lightwave Technology, 1999, 17, 2196-2201.	4.6	14
158	The existence of full gaps and deaf bands in two-dimensional sonic crystals. Journal of Lightwave Technology, 1999, 17, 2202-2207.	4.6	54
159	Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 1998, 80, 5325-5328.	7.8	481
160	Surface Shape Resonances in Lamellar Metallic Gratings. Physical Review Letters, 1998, 81, 665-668.	7.8	183
161	Optical studies of highly strained InGaAs/GaAs quantum wells grown on vicinal surfaces. Journal of Applied Physics, 1997, 81, 3281-3289.	2.5	21
162	Structural properties of Ga28P13 clusters encapsulated in zeolite Y. Solid-State Electronics, 1996, 40, 771-775.	1.4	1

#	Article	IF	CITATIONS
163	Theoretical study of strained thin quantum wells grown on vicinal surfaces. Physical Review B, 1995, 51, 14352-14360.	3.2	13
164	Left and right tunnelling times of electrons from quantum wells in double-barrier heterostructures investigated by the stabilization method. Journal of Physics Condensed Matter, 1994, 6, 887-898.	1.8	20
165	<title>Lateral localization effects in strained InGaAs/GaAs semiconductor quantum wells grown on vicinal surfaces</title> ., 1994, 2139, 222.		2
166	Doping-profile effects on the tunneling times of electrons confined in double-barrier heterostructures. Physical Review B, 1994, 50, 11884-11894.	3.2	4
167	Terrace length commensurability and surface reconstruction in highly strained InGaAs/GaAs quantum wells grown on vicinal substrates. Superlattices and Microstructures, 1994, 15, 155.	3.1	5
168	Localization in highly strained In0.35Ga0.65As/GaAs ultrathin quantum wells. Superlattices and Microstructures, 1993, 14, 39.	3.1	8
169	Optical control of the two-dimensional electron-gas density in modulation-doped quantum wells studied by magnetophotoluminescence. Physical Review B, 1993, 48, 1967-1969.	3.2	8
170	Lateral-superlattice effects in very narrow strained semiconductor quantum wells grown on vicinal surfaces. Physical Review B, 1993, 47, 13880-13883.	3.2	7
171	Tunneling time of electrons in modulation n-doped GaAlAsî—,GaAsî—,AlAs quantum wells. Superlattices and Microstructures, 1991, 10, 221-224.	3.1	0
172	Pressure experiments and self-consistent modelling of the transport properties in delta -doped AlGaAs layers. Semiconductor Science and Technology, 1991, 6, 445-448.	2.0	13
173	Electronic structure of modulation n-doped multiple quantum well. Applied Surface Science, 1990, 41-42, 464-469.	6.1	4
174	Magnetoluminescence studies of modulation n-doped GaAsî—'AlGaAs multiple quantum wells. Surface Science, 1990, 228, 202-205.	1.9	2
175	Reply to â€~â€~Comment on â€~Heterojunction valence-band-discontinuity dependence on face orientation' â Physical Review B, 1988, 37, 4803-4804.	€™â€™. 3.2	7
176	Early-stage formation of metal-semiconductor interfaces. Physical Review B, 1988, 37, 8516-8518.	3.2	12
177	Self-consistent calculation of the electronic properties of a selectively dopedAlxGa1â^'xAsâ^'GaAsquantum well under high magnetic fields. Physical Review B, 1987, 36, 5070-5073.	3.2	25
178	Heterojunction valence-band-discontinuity dependence on face orientation. Physical Review B, 1987, 35, 6468-6470.	3.2	41
179	Electronic structure of (100) semiconductor heterojunctions. Surface Science, 1986, 168, 553-557.	1.9	34
180	Electronic structure of a GaAs quantum well in an electric field. Physical Review B, 1986, 33, 8758-8761.	3.2	49

#	Article	IF	CITATIONS
181	Theoretical investigation of the pressure dependences of energy gaps in semiconductors. Physical Review B, 1985, 32, 1152-1155.	3.2	33
182	Schottky barrier formation. II. Etched metal-semiconductor junctions. Journal of Physics C: Solid State Physics, 1984, 17, 2039-2047.	1.5	7
183	Schottky-barrier formation for abrupt metal-covalent semiconductor junctions. Solid State Communications, 1984, 50, 29-31.	1.9	10
184	Theoretical analysis of optical-phonon deformation potentials in semiconductors. Journal of Physics C: Solid State Physics, 1983, 16, 2251-2259.	1.5	7
185	Schottky barrier formation. I. Abrupt metal-semiconductor junctions. Journal of Physics C: Solid State Physics, 1983, 16, 6499-6512.	1.5	51
186	Self-consistent calculation of the internal strain parameter of silicon. Physical Review B, 1982, 26, 5960-5962.	3. 2	16
187	Self-consistent calculation of properties of GaAs-AlAs superlattices with homopolar interfaces. Physical Review B, 1982, 26, 5824-5831.	3.2	28
188	Diamond structure versus wurtzite structure for silicon. Solid State Communications, 1981, 38, 871-873.	1.9	9
189	Generalized Wannier functions at interfaces: Stacking faults in silicon. Physical Review B, 1981, 24, 1006-1013.	3.2	20
190	Electron-phonon interaction in tetrahedrally bonded solids. Journal of Physics C: Solid State Physics, 1981, 14, 3355-3363.	1.5	10
191	Plasmon modes at a wedge using a non-local dielectric function. Solid State Communications, 1980, 35, 815-818.	1.9	11