Marielle Crozet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536075/publications.pdf

Version: 2024-02-01

1684188 1372567 22 99 5 10 citations h-index g-index papers 23 23 23 109 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	New approaches for interlaboratory comparisons analysis using dark uncertainty applied to radioactive materials. Talanta, 2022, , 123394.	5.5	O
2	Controlled Potential Coulometry for the accurate determination of plutonium in the presence of uranium: The role of sulfate complexation. Talanta, 2021, 222, 121490.	5 . 5	0
3	243Am certified reference material for mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 495-504.	1.5	5
4	Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield. Progress in Nuclear Energy, 2021, 137, 103740.	2.9	5
5	Accurate measurement of 55Fe in radioactive waste. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 591-601.	1.5	3
6	Metrology applications to D&D issues: issues at stake for INSIDER European project. EPJ Nuclear Sciences & Technologies, 2020, 6, 17.	0.7	1
7	INSIDER WP5 (in situ measurements): developed activities, main results and conclusions. EPJ Nuclear Sciences & Technologies, 2020, 6, 12.	0.7	2
8	Accurate determination of plutonium by Controlled Potential Coulometry: uncertainty evaluation by the Monte Carlo Method approach. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 747-758.	1.5	2
9	EQRAIN: uranium and plutonium interlaboratory exercises from 1997 to 2016â€"comparison to ITVs-2010. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 1013-1021.	1.5	6
10	Contribution of an interlaboratory comparison to the certification of the STAM/IRMM-0243 243Am reference material. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 717-725.	1.5	2
11	The importance of post-analysis data processing in ICP-AES: calibration adjustment and multi-line approaches. Journal of Analytical Atomic Spectrometry, 2018, 33, 1903-1909.	3.0	4
12	Investigation of the potential impact of storage place on tissue free water tritium and organically bound tritium activity determination. Radioprotection, 2017, 52, 281-289.	1.0	1
13	Measurement ofÂ14C in spent fuel: use of ozone. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 347-353.	1.5	1
14	Are analytical standards and reagents really reliable?. Accreditation and Quality Assurance, 2016, 21, 41-46.	0.8	0
15	Monte Carlo simulation for the evaluation of measurement uncertainty of spent fuel analytical results. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 103-115.	1.5	2
16	Use of an excess variance approach for the certification of reference materials by interlaboratory comparison. Accreditation and Quality Assurance, 2014, 19, 269-274.	0.8	9
17	Impact of dissolution on the uncertainty of spent fuel analysis. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 325-336.	1.5	1
18	Separation of actinides from fission products by extraction chromatography prior to X-ray fluorescence measurement for analytical control of a PUREX test. Radiochimica Acta, 2007, 95, 625-628.	1.2	5

#	Article	IF	CITATIONS
19	Separation of actinides by extraction chromatography prior to X-ray fluorescence measurement for analytical control of a PUREX test. Radiochimica Acta, 2007, 95, 629-635.	1.2	5
20	Carbon-13 Solid-State NMR Studies on Synthetic Model Compounds of [4Feâ^'4S] Clusters in the 2+ State. Journal of Physical Chemistry A, 2000, 104, 9990-10000.	2.5	31
21	Photoinduced addition of dioxygen molecules in the unsaturated sites of the Pd3(dppm)3CO2+ catalyst. Canadian Journal of Chemistry, 1995, 73, 123-130.	1.1	13
22	Analysis of the comparison of in situ measurements made on biological shielding of the BR3 nuclear reactor. Journal of Radioanalytical and Nuclear Chemistry, 0 , 1 .	1.5	1