Jing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Joint optimisation of regular and demand-responsive transit services. Transportmetrica A: Transport Science, 2023, 19, .	1.3	13
2	An alternative design for traffic intersections with work zones by using pre-signals. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, 26, 168-182.	2.6	7
3	An optimal control approach of integrating traffic signals and cooperative vehicle trajectories at intersections. Transportmetrica B, 2022, 10, 971-987.	1.4	10
4	A single-layer approach for joint optimization of traffic signals and cooperative vehicle trajectories at isolated intersections. Transportation Research Part C: Emerging Technologies, 2022, 134, 103459.	3.9	25
5	Conditional Transit Signal Priority Optimization at Stop-to-Stop Segments to Improve BRT On-Time Performance. IEEE Access, 2022, 10, 33512-33526.	2.6	2
6	Two-Step Optimization Model for Evaluating the Saturation Flow Rate under the Impact of Small-Sized Vehicles. Journal of Transportation Engineering Part A: Systems, 2022, 148, .	0.8	4
7	Optimal control of automated left-turn platoon at contraflow left-turn lane intersections. Journal of Intelligent and Connected Vehicles, 2022, 5, 206-214.	3.6	6
8	Optimal design of scheduling for bus rapid transit by combining with passive signal priority control. International Journal of Sustainable Transportation, 2021, 15, 407-418.	2.1	14
9	Conditions for Setting Exclusive Pedestrian Phases at Two-Phase Signalized Intersections considering Pedestrian-Vehicle Interaction. Journal of Advanced Transportation, 2021, 2021, 1-14.	0.9	6
10	Modeling and Simulation of Lane-Changing Management Strategies at On-Ramp and Off-Ramp Pair Areas Based on Cellular Automaton. IEEE Access, 2021, 9, 35034-35044.	2.6	8
11	An Alternative Design for the Intersections With Limited Traffic Lanes and Queuing Space. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1473-1483.	4.7	11
12	Modeling the Operation of Left-Turn Vehicles at Exit Lanes for Left-Turn Intersections. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	6
13	Optimal Trajectory Control for Left-Turn Vehicles at Exit Lane for Left-Turn Intersections. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	2
14	An Unscented Kalman Filter-Based Method for Reconstructing Vehicle Trajectories at Signalized Intersections. Journal of Advanced Transportation, 2021, 2021, 1-12.	0.9	2
15	Investigating gap acceptance behavior at two-way stop-controlled intersections in China. Transportation Letters, 2020, 12, 202-212.	1.8	12
16	Red-light running behavior of delivery-service E-cyclists based on survival analysis. Traffic Injury Prevention, 2020, 21, 558-562.	0.6	16
17	Modeling the interaction between vehicle yielding and pedestrian crossing behavior at unsignalized midblock crosswalks. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 73, 222-235.	1.8	42
18	Modelling the saturation flow rate for continuous flow intersections based on field collected data. PLoS ONE, 2020, 15, e0236922.	1.1	5

Jing Zhao

#	Article	IF	CITATIONS
19	Vehicle Routing for Dynamic Road Network Based on Travel Time Reliability. IEEE Access, 2020, 8, 190596-190604.	2.6	10
20	Two-dimensional vehicular movement modelling at intersections based on optimal control. Transportation Research Part B: Methodological, 2020, 138, 1-22.	2.8	95
21	Robust Signal Control of Exit Lanes for Left-Turn Intersections With the Consideration of Traffic Fluctuation. IEEE Access, 2020, 8, 42071-42081.	2.6	11
22	Modelling the operation of vehicles at signalised intersections with special width approach lane based on field data. IET Intelligent Transport Systems, 2020, 14, 1565-1572.	1.7	5
23	Improving the Operational Efficiency of Buses With Dynamic Use of Exclusive Bus Lane at Isolated Intersections. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 642-653.	4.7	32
24	Modeling loading area effectiveness at off-line bus stops with no clear-cut separation of berths. Transportmetrica A: Transport Science, 2019, 15, 396-416.	1.3	7
25	Analysis of alternative treatments for left turn bicycles at tandem intersections. Transportation Research, Part A: Policy and Practice, 2019, 126, 314-328.	2.0	5
26	Novel Design Method for Bus Approach Lanes with Bus Guidance and Priority Controls for Prioritizing Through and Left-Turn Buses. Journal of Advanced Transportation, 2019, 2019, 1-15.	0.9	6
27	Gap acceptance probability model for pedestrians at unsignalized mid-block crosswalks based on logistic regression. Accident Analysis and Prevention, 2019, 129, 76-83.	3.0	48
28	An innovative design for left turn bicycles at continuous flow intersections. Transportmetrica B, 2019, 7, 1305-1322.	1.4	8
29	Impact of Guideline Markings on Saturation Flow Rate at Signalized Intersections. Journal of Advanced Transportation, 2019, 2019, 1-13.	0.9	7
30	Vehicle yielding probability estimation model at unsignalized midblock crosswalks in Shanghai, China. PLoS ONE, 2019, 14, e0213876.	1.1	11
31	Exclusive Bus Lane Network Design: A Perspective from Intersection Operational Dynamics. Networks and Spatial Economics, 2019, 19, 1143-1171.	0.7	19
32	Pedestrian Delay Model for Continuous Flow Intersections under Three Design Patterns. Mathematical Problems in Engineering, 2019, 2019, 1-12.	0.6	1
33	Effect of lane allocation on operational efficiency at weaving areas based on a cellular automaton model. IET Intelligent Transport Systems, 2019, 13, 851-859.	1.7	11
34	Saturation Flow Models of Exit Lanes for Left-Turn Intersections. Journal of Transportation Engineering Part A: Systems, 2019, 145, .	0.8	19
35	Optimizing Vehicle and Pedestrian Trade-Off Using Signal Timing in Intersections with Center Transit Lanes. Journal of Transportation Engineering Part A: Systems, 2018, 144, .	0.8	9
36	Improving the operational performance of two-quadrant parclo interchanges with median U-turn concept. Transportmetrica B, 2018, 6, 190-210.	1.4	7

Jing Zhao

#	Article	IF	CITATIONS
37	Signal Timing Optimization for Transit Priority at Near-Saturated Intersections. Journal of Advanced Transportation, 2018, 2018, 1-14.	0.9	17
38	Analysis of saturation flow rate at tandem intersections using field data. IET Intelligent Transport Systems, 2018, 12, 394-403.	1.7	18
39	An extended car-following model with the consideration of the illegal pedestrian crossing. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 650-661.	1.2	17
40	An extended car-following model at un-signalized intersections under V2V communication environment. PLoS ONE, 2018, 13, e0192787.	1.1	13
41	Optimal Design of Midblock Crosswalk to Achieve Trade-Off between Vehicles and Pedestrians. Journal of Transportation Engineering Part A: Systems, 2017, 143, .	0.8	7
42	Impact of in-vehicle navigation information on lane-change behavior in urban expressway diverge segments. Accident Analysis and Prevention, 2017, 106, 53-66.	3.0	50
43	Safety evaluation of intersections with dynamic use of exit-lanes for left-turn using field data. Accident Analysis and Prevention, 2017, 102, 31-40.	3.0	40
44	An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams. Physica A: Statistical Mechanics and Its Applications, 2017, 473, 178-187.	1.2	30
45	Increasing the capacity of signalized intersections with left-turn waiting areas. Transportation Research, Part A: Policy and Practice, 2017, 105, 181-196.	2.0	24
46	Increasing the Capacity of the Intersection Downstream of the Freeway Offâ€Ramp Using Presignals. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 674-690.	6.3	20
47	Modeling Pedestrian Delays at Signalized Intersections as a Function of Crossing Directions and Moving Paths. Transportation Research Record, 2017, 2615, 95-104.	1.0	5
48	Operational Efficiency Evaluation of Intersections with Dynamic Lane Assignment Using Field Data. Journal of Advanced Transportation, 2017, 2017, 1-13.	0.9	10
49	Increasing Signalized Intersection Capacity with Unconventional Use of Special Width Approach Lanes. Computer-Aided Civil and Infrastructure Engineering, 2016, 31, 794-810.	6.3	34
50	A network enhancement model with integrated lane reorganization and traffic control strategies. Journal of Advanced Transportation, 2016, 50, 1090-1110.	0.9	22
51	An extended car-following model with consideration of speed guidance at intersections. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 1-8.	1.2	43
52	Integrated signal optimization and non-traditional lane assignment for urban freeway off-ramp congestion mitigation. Transportation Research Part C: Emerging Technologies, 2016, 73, 219-238.	3.9	25
53	Optimization model for layout and signal design of full continuous flow intersections. Transportation Letters, 2016, 8, 194-204.	1.8	12
54	Optimal operation of freeway weaving segment with combination of lane assignment and on-ramp signal control. Transportmetrica A: Transport Science, 2016, 12, 413-435.	1.3	20

JING ZHAO

#	Article	IF	CITATIONS
55	Capacity Estimation Model for Signalized Intersections under the Impact of Access Point. PLoS ONE, 2016, 11, e0145989.	1.1	13
56	Optimal operation of displaced left-turn intersections: A lane-based approach. Transportation Research Part C: Emerging Technologies, 2015, 61, 29-48.	3.9	53
57	Dynamic Turning Restriction Management for Signalized Road Network. Transportation Research Record, 2015, 2487, 96-111.	1.0	8
58	Operation of signalized diamond interchanges with frontage roads using dynamic reversible lane control. Transportation Research Part C: Emerging Technologies, 2015, 51, 196-209.	3.9	32
59	Driving simulator evaluation of drivers' response to intersections with dynamic use of exit-lanes for left-turn. Accident Analysis and Prevention, 2015, 81, 107-119.	3.0	41
60	Optimal Intersection Operation with Median U-Turn. Transportation Research Record, 2014, 2439, 71-82.	1.0	22
61	Integrated design and operation of urban arterials with reversible lanes. Transportmetrica B, 2014, 2, 130-150.	1.4	35
62	Capacity Model for Signalized Intersection under the Impact of Upstream Short Lane. Procedia, Social and Behavioral Sciences, 2013, 96, 1745-1754.	0.5	3
63	Two-Step Optimization Model for Dynamic Lane Assignment at Isolated Signalized Intersections. Transportation Research Record, 2013, 2355, 39-48.	1.0	31
64	Increasing the Capacity of Signalized Intersections with Dynamic Use of Exit Lanes for Left-Turn Traffic. Transportation Research Record, 2013, 2355, 49-59.	1.0	64
65	Effective Coordinated Optimization Model for Transit Priority Control under Arterial Progression. Transportation Research Record, 2013, 2366, 71-83.	1.0	27
66	Effective Coordinated Optimization Model for Transit Priority Control under Arterial Progression. Transportation Research Record, 2013, 2356, 71-83.	1.0	16