
Mikhail Ievlev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The first example of unusual reversible nucleophilic addition to 2-(5-aryl-2-oxo-3 <i>H</i> -pyrrol-3-ylidene)malononitriles – a new tool for the creation of thermosensitive molecular switches. New Journal of Chemistry, 2022, 46, 7845-7849.	2.8	3
2	A novel three-position molecular switch based on the transformations of a cyano-substituted pyrrol-2-one derivative. New Journal of Chemistry, 2022, 46, 11030-11034.	2.8	5
3	Synthesis and optical properties of the first representatives of N,N-disubstituted aminostyryl D–Ĩ€â€"A chromophores with tunable hydroxytricyanopyrrole (HTCP) acceptor. Dyes and Pigments, 2022, 204, 110455.	3.7	5
4	Novel approach to the synthesis and optical absorption properties of 2-(2-oxo-1,2-dihydro-3 <i>H-</i> pyrrole-3-ylidene)malononitriles. Synthetic Communications, 2021, 51, 727-737.	2.1	4
5	Alkali metal salts of a tetracyanopyridine (TCPy) derivative: structure characterization and luminescence properties. CrystEngComm, 2021, 23, 2816-2824.	2.6	8
6	First thermal studies on visible-light-switchable negative T-type photochromes of a nitrile-rich series. RSC Advances, 2021, 11, 21097-21103.	3.6	6
7	Directed Synthesis of Regioisomeric Monoarylâ€6ubstituted Pyridines Containing a Tricyanobutadiene Fragment and Study on Their Optical Properties. ChemistrySelect, 2021, 6, 5552-5558.	1.5	2
8	Synthesis and spectral studies of novel nicotinonitrile-based fluorescent dyes. Dyes and Pigments, 2021, 197, 109914.	3.7	6
9	Facile Synthesis and Spectral Properties of Novel Isomeric Nitrile-Rich Bipyridine Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 1051.	1.2	4
10	Synthesis and Luminescence Spectral Properties of New Cyano-Substituted 2,2′-Bipyridine Derivatives. Russian Journal of Organic Chemistry, 2021, 57, 1961-1967.	0.8	3
11	Pyrrole ring opening – pyridine ring closure: Recyclization of 2-(2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)malononitriles into highly functionalized nicotinonitriles. Tetrahedron Letters, 2020, 61, 151368.	1.4	4
12	Bicyclic 6-6 Systems With One Bridgehead (Ring Junction) Nitrogen Atom: No Extra Heteroatom. , 2020, , 1-1.		0
13	Direct synthesis of variously substituted negative photochromes of hydroxytricyanopyrrole (HTCP) series. Synthetic Communications, 2020, 50, 2413-2421.	2.1	4
14	The first example of "turn-off―red fluorescence photoswitching for the representatives of nitrile-rich negative photochromes. New Journal of Chemistry, 2020, 44, 6121-6124.	2.8	5
15	Synthesis, Solution and Solid‣tate Fluorescence of 2â€(N ycloamino)cinchomeronic Dinitrile Derivatives. ChemistrySelect, 2020, 5, 7243-7248.	1.5	6
16	Synthesis and fine-tuning of thermal stability of the negative nitrile-rich photochromes of hydroxytricyanopyrrole (HTCP) series. Research on Chemical Intermediates, 2020, 46, 3477-3490.	2.7	4
17	Crystallographic characterization of ethylammonium salts of tetracyanopyridine (TCPy) and fluorescence determination of the degree of substitution of the amino nitrogen atom thereof. CrystEngComm, 2019, 21, 5500-5507.	2.6	16
18	DIPEA catalyzed step-by-step synthesis and photophysical properties of thieno[2,3-b]pyridine derivatives. Tetrahedron, 2019, 75, 130465.	1.9	12

Μικήαιι Ιενιέν

#	Article	IF	CITATIONS
19	Synthesis of 2,7-Diazabicyclo[3.2.1]oct-3-ene Derivatives. Russian Journal of Organic Chemistry, 2019, 55, 1009-1012.	0.8	Ο
20	Novel group of negative photochromes containing a nitrile-rich acceptor: synthesis and photochromic properties. Research on Chemical Intermediates, 2019, 45, 4625-4636.	2.7	10
21	Tuning the photochromic properties of chromophores containing a nitrile-rich acceptor: a novel branch in the investigation of negative photochromes. New Journal of Chemistry, 2019, 43, 8414-8417.	2.8	20
22	Tuning solid-state fluorescence of a novel group D-ï€-A chromophores with a reactive hydroxytricyanopyrrole (HTCP) acceptor. Dyes and Pigments, 2019, 165, 451-457.	3.7	16
23	Synthesis and Solid State Fluorescence of Tricyanofuran Derivatives Containing a 2-Vinylphenol Fragment. Russian Journal of Organic Chemistry, 2019, 55, 1623-1625.	0.8	3
24	First representatives of functionalized D–Ĩ€â€"A chromophores containing a tunable hydroxytricyanopyrrole (HTCP) acceptor and <i>N</i> , <i>N</i> -disubstituted aminophenyl donor. New Journal of Chemistry, 2019, 43, 17923-17926.	2.8	4
25	Novel chromophores of cyanopyridine series with strong solvatochromism and near-infrared solid-state fluorescence. Dyes and Pigments, 2018, 156, 357-368.	3.7	24
26	Three-component synthesis of alkylammonium 4-cyano-5-(dicyanomethylene)-2-hydroxy-2,5-dihydropyrrol-1-ides. Research on Chemical Intermediates, 2018, 44, 3565-3579.	2.7	9
27	Synthesis and spectroscopic studies of 3-carbamoylisonicotinic acid derivatives. Tetrahedron Letters, 2018, 59, 2189-2192.	1.4	6
28	Reaction of 2-(2-Oxo-1,2-dihydro-3H-pyrrol-3-ylidene)- malononitriles with C-Nucleophiles. Synthesis of New Spiro-Fused Pyrrole Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1790-1793.	0.8	4
29	A New Branch of the Diversity-Oriented Synthesis Based on 4-Oxoalkane-1,1,2,2-tetracarbonitriles: Synthesis of Cyano-Substituted Iminofuran Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1337-1340.	0.8	3
30	Synthesis of 2-(3-cyano-5-hydroxy-5-methyl-4-vinylene-1 <i>H</i> -pyrrol-2(5 <i>H</i>)-ylidene)malononitriles – novel functionalized analogs of tricyanofuran-containing (TCF) push–pull chromophores. Synthetic Communications, 2018, 48, 2850-2858.	2.1	12
31	Aqueous-Phase Synthesis and Solid-Phase Fluorescence of 3-(Methoxyphenyl)-2-cyanoacrylamides. Russian Journal of Organic Chemistry, 2018, 54, 1100-1102.	0.8	4
32	Synthesis of 2-Hydrazinylpyridine-3,4-dicarbonitriles and Their Reaction with Salicylaldehyde Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 873-877.	0.8	2
33	Synthesis of pyrano[3,4-c]pyrroles (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 590-592.	1.2	3
34	New approach to the synthesis of 2,3-dihydrofuro[2,3-b]pyridine derivatives: double reduction and double heterocyclization of 2-(3-cyano-5-hydroxy-1,5-dihydro-2H-pyrrol-2-ylidene)malononitriles in the presence of sodium borohydride. Chemistry of Heterocyclic Compounds, 2018, 54, 447-450.	1.2	0
35	Synthesis of photochromic maleimides containing dithienylethene and azobenzene fragments. Russian Journal of Organic Chemistry, 2017, 53, 141-143.	0.8	2
36	Synthesis of fluorescent alkoxybenzylidene derivatives of malononitrile dimer in water in the presence of Triton X-100. Russian Journal of Organic Chemistry, 2017, 53, 1025-1029.	0.8	10

Mikhail Ievlev

#	Article	IF	CITATIONS
37	Transformations of 3,3,4-tricyano-3,4-dihydro-2H-pyran-4-carboxamides. Synthesis of pyrano[3,4-c]pyrrole derivatives. Russian Journal of Organic Chemistry, 2017, 53, 1030-1035.	0.8	2
38	Synthesis of dinitrochloromethyl pyridine derivatives. Russian Journal of Organic Chemistry, 2017, 53, 1036-1039.	0.8	3
39	Synthesis and solid-state fluorescence of 2-alkylamino-4-aminopyridine-3,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 886-890.	0.8	10
40	Synthesis of 2-(5-aryl-4-methyl-2-oxo-1,2-dihydro- 3H-pyrrol-3-ylidene)malononitriles. Russian Journal of Organic Chemistry, 2017, 53, 1601-1603.	0.8	6
41	Iminolactone-lactam rearrangement in reactions of Î ³ -oxonitriles. Chemistry of Heterocyclic Compounds, 2017, 53, 948-952.	1.2	8
42	Rearrangement of 4-oxoalkane-1,1,2,2-tetracarbonitriles in the directed synthesis of aryl-substituted 2-(3-cyano-5-hydroxy-1,5-dihydro-2H-pyrrol-2-ylidene)malononitriles. Chemistry of Heterocyclic Compounds, 2017, 53, 1057-1060.	1.2	7
43	Synthesis, solution and solid-state fluorescence of 2-diethylaminocinchomeronic dinitrile derivatives. RSC Advances, 2017, 7, 34886-34891.	3.6	22
44	Unusual transformations of 7-imino-6-oxabicyclo[3.2.1]oct-3-ene-1,8,8-tricarbonitriles in acidic media. Tetrahedron Letters, 2017, 58, 3148-3150.	1.4	3
45	Diastereoselective synthesis of 3,4-dihydro-2H-pyran-4-carboxamides through an unusual regiospecific quasi-hydrolysis of a cyano group. Beilstein Journal of Organic Chemistry, 2016, 12, 2093-2098.	2.2	10
46	Diastereoselective Cascade Assembly of Functionalized Pyrano[3,4- <i>c</i>]pyrrole Derivatives. Organic Letters, 2016, 18, 1940-1943.	4.6	23
47	Synthesis of 2,7-dioxabicyclo[3.2.1]octanes (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 213-215.	1.2	4
48	Synthesis of polyfunctional glycosyl derivatives of 2,7-dioxabicyclo[3.2.1]octane. Russian Journal of Organic Chemistry, 2016, 52, 1220-1222.	0.8	1
49	Rearrangement of 4-oxobutane-1,1,2,2-tetracarbonitriles to the penta-1,3-diene-1,1,3-tricarbonitrile moiety as an approach to novel acceptors for donor–acceptor chromophores. Tetrahedron Letters, 2016, 57, 4101-4104.	1.4	16
50	2-Pyridone-based fluorophores: Synthesis and fluorescent properties of pyrrolo[3,4- c]pyridine derivatives. Dyes and Pigments, 2016, 134, 459-464.	3.7	24
51	Synthesis and solid-state fluorescence of aryl substituted 2-halogenocinchomeronic dinitriles. RSC Advances, 2016, 6, 82227-82232.	3.6	28
52	Acylation of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1522-1524.	0.8	1
53	Solvent-free synthesis of 4-oxoalkane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1353-1355.	0.8	7
54	Glycine catalyzed diastereoselective domino-synthesis of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles in water. Green Chemistry, 2015, 17, 4234-4238.	9.0	30

Mikhail Ievlev

#	Article	IF	CITATIONS
55	Synthesis of 2-methoxypyridine-3,4-dicarbonitriles and 4-methoxy-2,3-dihydro-1H-pyrrolo[3,4]pyridine-1,3-diones. Russian Journal of Organic Chemistry, 2015, 51, 1668-1670.	0.8	7
56	A novel method for the domino synthesis of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles and studies of stereochemical characteristics of formation and structure thereof. Chemistry of Heterocyclic Compounds, 2015, 51, 457-461.	1.2	14
57	Regiospecific synthesis of gem -dinitro derivatives of 2-halogenocycloalka[b]pyridine-3,4-dicarbonitriles. Tetrahedron, 2015, 71, 7445-7450.	1.9	27
58	Directed synthesis of new spiro-fused photochromes of diarylethene series. Chemistry of Heterocyclic Compounds, 2015, 51, 518-525.	1.2	23
59	Interaction of 4-oxoalkane-1,1,2,2-tetracarbonitriles with Lawesson's reagent – a new approach to the synthesis of 2,2â€2-disulfanediylbis(1H-pyrroles). The synthesis of photochromic diarylethene with a disulfide bridge. RSC Advances, 2015, 5, 65316-65320.	3.6	18
60	Domino-synthesis and fluorescence properties of 4-cyano-2-oxo-1,2-dihydropyridine-3-carboxamides and 2-oxo-1,2-dihydropyridine-3,4-dicarbonitriles. RSC Advances, 2015, 5, 34191-34198.	3.6	35
61	Targeted synthesis of 2,3-dicyano-2-(2-oxoalkyl)succinates. Russian Journal of Organic Chemistry, 2014, 50, 749-751.	0.8	1
62	Synthesis of photochromic 5,6-diaryl-2-chloropyridine-3,4-dicarbonitriles from 3,4-diaryl-4-oxobutane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2014, 50, 1372-1374.	0.8	24
63	A novel water-soluble multicolor halo- and photochromic switching system based on a nitrile-rich acceptor. New Journal of Chemistry, 0, , .	2.8	7