
Iis Sopyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535354/publications.pdf Version: 2024-02-01

LIS SODVAN

#	Article	IF	CITATIONS
1	Preparation, scratch adhesion and anti-corrosion performance of TiO ₂ -MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique. Journal of Adhesion Science and Technology, 2018, 32, 91-102.	1.4	9
2	Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Applied Nanoscience (Switzerland), 2018, 8, 1767-1779.	1.6	4
3	Effect of poly(ethylene glycol) on the injectability, setting behavior and mechanical properties of calcium phosphate bone cement. IIUM Engineering Journal, 2018, 19, 192-202.	0.5	3
4	Incorporation of Poly(Vinyl Alcohol) for The Improved Properties of Hydrothermal Derived Calcium Phosphate Cements. Indonesian Journal of Chemistry, 2018, 18, 354.	0.3	0
5	Optimization of ultraviolet ozone treatment process for improvement of polycaprolactone (PCL) microcarrier performance. Cytotechnology, 2017, 69, 601-616.	0.7	17
6	Recent Developments on Injectable Calcium Phosphate Bone Cement. Recent Patents on Materials Science, 2017, 9, 72-94.	0.5	5
7	Ultraviolet/ozone treated polystyrene microcarriers for animal cell culture. Journal of Chemical Technology and Biotechnology, 2016, 91, 2607-2619.	1.6	13
8	Development of Porous Calcium Phosphate Bioceramics for Bone Implant Applications: A Review. Recent Patents on Materials Science, 2013, 6, 238-252.	0.5	19
9	Mechanochemical Synthesis of Hydroxyapatite Bioceramics through Two Different Milling Media. Key Engineering Materials, 2012, 531-532, 254-257.	0.4	0
10	Effect of hydroxyapatite and tricalcium phosphate addition on protein foaming-consolidation porous alumina. Journal of Porous Materials, 2012, 19, 733-743.	1.3	3
11	Development of Triphasic Calcium Phosphate–Carbon Nanotubes (HA/TCP-CNT) Composite: A Preliminary Study. Key Engineering Materials, 2012, 531-532, 258-261.	0.4	3
12	Floating porous alumina from protein foaming-consolidation technique for cell culture application. Ceramics International, 2012, 38, 5287-5291.	2.3	9
13	Doping Metal into Calcium Phosphate Phase for Better Performance of Bone Implant Materials. Recent Patents on Materials Science, 2012, 5, 18-47.	0.5	8
14	Dependence of the Fracture Toughness on the Sintering Time of Dense Hydroxyapatite Bioceramics. Materials Science Forum, 2011, 694, 391-395.	0.3	2
15	Recent Progress on Hydroxyapatite-Based Dense Biomaterials for Load Bearing Bone Substitutes. Recent Patents on Materials Science, 2011, 4, 63-80.	0.5	4
16	Effects of Powder Synthesis Method on the Sinterability of Hydroxyapatite. Advanced Materials Research, 2011, 264-265, 1538-1544.	0.3	1
17	Porous ceramics with controllable properties prepared by protein foaming-consolidation method. Journal of Porous Materials, 2011, 18, 195-203.	1.3	27
18	Phase behaviour of manganeseâ€doped biphasic calcium phosphate ceramics synthesized via solâ€gel method. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 823-831.	0.8	6

IIS SOPYAN

#	Article	lF	CITATIONS
19	Porous alumina through protein foaming–consolidation method: effect of dispersant concentration on the physical properties. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 863-869.	0.8	6
20	Irradiation Modification of Epoxidized Natural Rubber/Ethylene Vinyl Acetate/Carbon Nanotubes Nanocomposites. Advanced Materials Research, 2011, 364, 427-433.	0.3	2
21	Irradiation Modification of Epoxidized Natural Rubber/Ethylene Vinyl Acetate/Carbon Nanotubes Nanocomposites. Advanced Materials Research, 2011, 364, 196-201.	0.3	1
22	Effect of Nano Silica on the Sinterability of Hydroxyapatite Dense Bodies. Advanced Materials Research, 2011, 264-265, 1832-1838.	0.3	3
23	Egg Yolk as Pore Creating Agent to Produce Porous Tri-Calcium Phosphate for Bone Implant Application. Advanced Materials Research, 2011, 264-265, 760-764.	0.3	2
24	Pressureless Sintering of Electro-Conductive Zirconia Composites. Materials Science Forum, 2011, 694, 304-308.	0.3	3
25	Dense Manganese Doped Biphasic Calcium Phosphate for Load Bearing Bone Implants. Advanced Materials Research, 2010, 93-94, 393-396.	0.3	4
26	Fabrication and Characterization of Strontium-Doped Hydroxyapatite Bioceramics Scaffolds for Bone Implant Application: A Preliminary Study. Advanced Materials Research, 2010, 93-94, 401-404.	0.3	3
27	EFFECT OF THE PROCESSING PARAMETERS ON THE INTEGRITY OF CALCIUM PHOSPHATE COATINGS PRODUCED BY RF-MAGNETRON SPUTTERING. International Journal of Modern Physics B, 2009, 23, 5811-5818.	1.0	8
28	Nanosized TiO ₂ Photocatalyst Powder via Sol-Gel Method: Effect of Hydrolysis Degree on Powder Properties. International Journal of Photoenergy, 2009, 2009, 1-8.	1.4	45
29	Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceramics International, 2009, 35, 3161-3168.	2.3	80
30	Recent Progress on Development of TiO2 Thin Film Photocatalysts for Pollutant Removal. Recent Patents on Materials Science, 2009, 2, 88-111.	0.5	6
31	Recent Progress on the Development of Porous Bioactive Calcium Phosphate for Biomedical Applications. Recent Patents on Biomedical Engineering, 2008, 1, 213-229.	0.5	35
32	Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2films. Science and Technology of Advanced Materials, 2007, 8, 33-39.	2.8	49
33	Efficient TiO2Powder and Film Photocatalysts with Rutile Crystal Structure. Chemistry Letters, 1996, 25, 69-70.	0.7	52
34	An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98, 79-86.	2.0	400
35	Synthesis of polytitanosiloxanes and their transformation to SiO2–TiO2 ceramic fibers. Journal of Polymer Science Part A, 1994, 32, 3133-3139.	2.5	21
36	Highly Efficient TiO2Film Photocatalyst. Degradation of Gaseous Acetaldehyde. Chemistry Letters, 1994, 23, 723-726.	0.7	137

IIS SOPYAN

#	Article	IF	CITATIONS
37	Effect of Slurry Preparation on Physical Properties of Porous Hydroxyapatite Prepared via Polymeric Sponge Method. Advanced Materials Research, 0, 47-50, 932-935.	0.3	3
38	Application of Low Cost Polyurethane (PU) Foam for Fabricating Porous Tri-Calcium Phosphate (TCP). Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 8, 1-7.	0.7	10
39	Porous Alumina through Protein Foaming-Consolidation Method: Effect of Stirring Time and Drying Temperature on the Physical Properties. Advanced Materials Research, 0, 93-94, 397-400.	0.3	2
40	Concentration Effect of Aqueous Synthesis on Biphasic Hydroxyapatite – β-Tricalcium Phosphate Composition. Advanced Materials Research, 0, 93-94, 405-408.	0.3	4
41	Mechanochemical Synthesis of Hydroxyapatite Nanopowder: Effects of Rotation Speed and Milling Time on Powder Properties. Applied Mechanics and Materials, 0, 110-116, 3639-3644.	0.2	8
42	Sodium-Doped Hydroxyapatite Nanopowder through Sol-Gel Method: Synthesis and Characterization. Materials Science Forum, 0, 694, 128-132.	0.3	6
43	Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics. Advanced Materials Research, 0, 264-265, 1849-1855.	0.3	5
44	Preparation of Dense Biphasic Calcium Phosphate Ceramics Using Eggshell Derived Nanopowders. Applied Mechanics and Materials, 0, 110-116, 3645-3649.	0.2	1
45	Mechanochemical Synthesis of Nanosized Hydroxyapatite Powder and its Conversion to Dense Bodies. Materials Science Forum, 0, 694, 118-122.	0.3	14
46	Surface Modification of Polystyrene Beads by UV/Ozone Treatment. Advanced Materials Research, 0, 264-265, 1532-1537.	0.3	10
47	Effects of Bismuth Oxide on the Properties of Calcium Phosphate Bioceramics. Advanced Materials Research, 0, 264-265, 1839-1848.	0.3	1
48	Sintering of Hydroxyapatite Ceramic Produced by Wet Chemical Method. Advanced Materials Research, 0, 264-265, 1856-1861.	0.3	5
49	The Effects of Calcium Excess, Water Amount and Mixing Time on the Injectability of Calcium Phosphate Filling Materials. Applied Mechanics and Materials, 0, 110-116, 8-12.	0.2	3
50	Protein Foaming-Consolidation Method for Fabrication of High Performance Porous Bioceramics. Advanced Materials Research, 0, 622-623, 1759-1763.	0.3	0
51	Mechanochemical Synthesis of Magnesium Doped Hydroxyapatite: Powder Characterization. Applied Mechanics and Materials, 0, 372, 62-65.	0.2	11
52	Synthesis and Properties of Biphasic Calcium Phosphate Prepared by Different Methods. Advanced Materials Research, 0, 970, 20-25.	0.3	9
53	Sol-Gel Synthesis of Zn Doped HA Powders and their Conversion to Porous Bodies. Applied Mechanics and Materials, 0, 493, 603-608.	0.2	4
54	Conversion of Strontium Hydroxyapatite Nanopowders to Porous Scaffolds for Bone Implant Application. Applied Mechanics and Materials, 0, 607, 3-6.	0.2	0

#	Article	IF	CITATIONS
55	Cement Bonded Sol-Gel TiO ₂ Powder Photocatalysis for Phenol Removal. Applied Mechanics and Materials, 0, 776, 271-276.	0.2	2