
Igor Bondarev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7534638/publications.pdf Version: 2024-02-01

ICOP RONDAREV

#	Article	IF	CITATIONS
1	Strong exciton-plasmon coupling in semiconducting carbon nanotubes. Physical Review B, 2009, 80, .	3.2	51
2	van der Waals coupling in atomically doped carbon nanotubes. Physical Review B, 2005, 72, .	3.2	48
3	Spontaneous-decay dynamics in atomically doped carbon nanotubes. Physical Review B, 2004, 70, .	3.2	43
4	Universal features of the optical properties of ultrathin plasmonic films. Optical Materials Express, 2017, 7, 3731.	3.0	35
5	Asymptotic exchange coupling of quasi-one-dimensional excitons in carbon nanotubes. Physical Review B, 2011, 83, .	3.2	27
6	Single-wall carbon nanotubes as coherent plasmon generators. Physical Review B, 2012, 85, .	3.2	27
7	Cryogenic characterization of titanium nitride thin films. Optical Materials Express, 2019, 9, 2117.	3.0	20
8	Optical absorption by atomically doped carbon nanotubes. Physical Review B, 2006, 74, .	3.2	17
9	Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Physical Review B, 2018, 97, .	3.2	17
10	Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. Physical Review Research, 2020, 2, .	3.6	17
11	Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. Nano Letters, 2022, 22, 4622-4629.	9.1	17
12	Relative stability of excitonic complexes in quasi-one-dimensional semiconductors. Physical Review B, 2014, 90, .	3.2	16
13	Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice. Applied Physics Letters, 2016, 109, 213302.	3.3	16
14	Surface Electromagnetic Phenomena in Pristine and Atomically Doped Carbon Nanotubes. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1673-1687.	0.4	15
15	Possibility for exciton Bose-Einstein condensation in carbon nanotubes. Physical Review B, 2014, 89, .	3.2	14
16	Finite-thickness effects in plasmonic films with periodic cylindrical anisotropy [Invited]. Optical Materials Express, 2019, 9, 285.	3.0	14
17	Optical response of finite-thickness ultrathin plasmonic films. MRS Communications, 2018, 8, 1092-1097.	1.8	13
18	Photophysics of carbon nanotubes and nanotube composites. Chemical Physics, 2013, 413, 1-2.	1.9	11

IGOR BONDAREV

#	Article	IF	CITATIONS
19	Collective Excitations and Optical Response of Ultrathin Carbon-Nanotube Films. Physical Review Applied, 2021, 15, .	3.8	11
20	Charged Bosons Made of Fermions in Bilayer Structures with Strong Metallic Screening. Nano Letters, 2021, 21, 7669-7675.	9.1	10
21	Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube. Optics Express, 2015, 23, 3971.	3.4	9
22	Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors. Modern Physics Letters B, 2016, 30, 1630006.	1.9	9
23	Surface plasmon amplification under controlled excitonâ€plasmon coupling in individual carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1259-1264.	0.8	8
24	One-dimensional transport in hybrid metal-semiconductor nanotube systems. Physical Review B, 2016, 93, .	3.2	8
25	Controlled exciton–plasmon coupling in a mixture of ultrathin periodically aligned single-wall carbon nanotube arrays. Journal of Applied Physics, 2021, 129, .	2.5	8
26	Charge-Induced Fluctuation Forces in Graphitic Nanostructures. Physical Review X, 2016, 6, .	8.9	7
27	Crystal phases of charged interlayer excitons in van der Waals heterostructures. Communications Physics, 2021, 4, .	5.3	7
28	Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems. Journal of Chemical Physics, 2014, 140, 064301.	3.0	6
29	Monitoring Charge Separation Processes in Quasi-One-Dimensional Organic Crystalline Structures. Nano Letters, 2017, 17, 6056-6061.	9.1	5
30	Exciton Bose-Einstein Condensation in Double Walled Carbon Nanotubes. MRS Advances, 2017, 2, 2401-2406.	0.9	3
31	Surface exciton-plasmons and optical response of small-diameter carbon nanotubes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 376-384.	0.6	2
32	Optical Response of Ultrathin Periodically Aligned Single-Wall Carbon Nanotube Films. MRS Advances, 2020, 5, 2685-2691.	0.9	2
33	Quantum electrodynamics of optical metasurfaces. , 2018, , .		1