Alan J Franzluebbers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7534577/publications.pdf

Version: 2024-02-01

180 papers 10,550 citations

50 h-index 97 g-index

188 all docs

188 docs citations

188 times ranked 8616 citing authors

#	Article	IF	CITATIONS
1	Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 2007, 150, 107-124.	3.7	514
2	Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 2014, 190, 4-8.	2.5	482
3	Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 2008, 40, 2843-2853.	4.2	450
4	Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management. Soil Science Society of America Journal, 2012, 76, 494-504.	1.2	436
5	Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry, 2011, 43, 2184-2193.	4.2	362
6	Soil Degradation in India: Challenges and Potential Solutions. Sustainability, 2015, 7, 3528-3570.	1.6	324
7	Reconsidering Integrated Crop-Livestock Systems in North America. Agronomy Journal, 2007, 99, 325-334.	0.9	304
8	Why do we need to standardize no-tillage research?. Soil and Tillage Research, 2014, 137, 16-22.	2.6	246
9	Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biology and Biochemistry, 2000, 32, 469-478.	4.2	237
10	Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States. Soil Science Society of America Journal, 2010, 74, 347-357.	1.2	226
11	The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences, 2012, 9, 1173-1182.	1.3	224
12	Longâ€Term Changes in Soil Carbon and Nitrogen Pools in Wheat Management Systems. Soil Science Society of America Journal, 1994, 58, 1639-1645.	1.2	206
13	Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Applied Soil Ecology, 1999, 11, 91-101.	2.1	202
14	Integrated Crop-Livestock Systems in the Southeastern USA. Agronomy Journal, 2007, 99, 361-372.	0.9	198
15	Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biology and Biochemistry, 1999, 31, 1083-1090.	4.2	185
16	Soil Organic Carbon, Microbial Biomass, and Mineralizable Carbon and Nitrogen in Sorghum. Soil Science Society of America Journal, 1995, 59, 460-466.	1.2	183
17	Comparison of Permanganateâ€Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. Soil Science Society of America Journal, 2016, 80, 1352-1364.	1.2	181
18	Soil Carbon, Nitrogen, and Aggregation in Response to Type and Frequency of Tillage. Soil Science Society of America Journal, 1999, 63, 349-355.	1.2	172

#	Article	IF	CITATIONS
19	Active fractions of organic matter in soils with different texture. Soil Biology and Biochemistry, 1996, 28, 1367-1372.	4.2	158
20	Climatic influences on active fractions of soil organic matter. Soil Biology and Biochemistry, 2001, 33, 1103-1111.	4.2	154
21	Particulate Organic Carbon Content and Potential Mineralization as Affected by Tillage and Texture. Soil Science Society of America Journal, 1997, 61, 1382-1386.	1.2	145
22	Tillage and crop effects on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density. Applied Soil Ecology, 1995, 2, 95-109.	2.1	141
23	Determination of Microbial Biomass and Nitrogen Mineralization following Rewetting of Dried Soil. Soil Science Society of America Journal, 1996, 60, 1133-1139.	1.2	141
24	Early Response of Soil Organic Fractions to Tillage and Integrated Crop–Livestock Production. Soil Science Society of America Journal, 2008, 72, 613-625.	1.2	140
25	Tillage and Crop Effects on Seasonal Soil Carbon and Nitrogen Dynamics. Soil Science Society of America Journal, 1995, 59, 1618-1624.	1.2	134
26	Exploring integrated crop–livestock systems in different ecoregions of the United States. European Journal of Agronomy, 2014, 57, 21-30.	1.9	131
27	Agronomic and environmental impacts of pasture–crop rotations in temperate North and South America. Agriculture, Ecosystems and Environment, 2014, 190, 18-26.	2.5	128
28	Soil Microbial Biomass and Mineralizable Carbon of Waterâ€Stable Aggregates. Soil Science Society of America Journal, 1997, 61, 1090-1097.	1.2	125
29	Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and in repeatedly dried and wetted soil. Soil Biology and Biochemistry, 1994, 26, 1379-1387.	4.2	121
30	The relationship of land use practices to surface water quality in the Upper Oconee Watershed of Georgia. Forest Ecology and Management, 2000, 128, 39-48.	1.4	120
31	Seasonal changes in soil microbial biomass and mineralizable c and n in wheat management systems. Soil Biology and Biochemistry, 1994, 26, 1469-1475.	4.2	119
32	Soil Organic Matter Pools during Early Adoption of Conservation Tillage in Northwestern Canada. Soil Science Society of America Journal, 1996, 60, 1422-1427.	1.2	117
33	Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture, Ecosystems and Environment, 2009, 129, 28-36.	2.5	113
34	Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Canadian Journal of Soil Science, 1996, 76, 387-393.	0.5	91
35	Should Soil Testing Services Measure Soil Biological Activity?. Agricultural and Environmental Letters, 2016, 1, 150009.	0.8	90
36	Development of soil microbial communities during tallgrass prairie restoration. Soil Biology and Biochemistry, 2010, 42, 302-312.	4.2	85

#	Article	IF	CITATIONS
37	Soil Organic Carbon Fractions and Aggregation in the Southern Piedmont and Coastal Plain. Soil Science Society of America Journal, 2008, 72, 221-230.	1.2	80
38	A rapid procedure for estimating nitrogen mineralization in manured soil. Biology and Fertility of Soils, 2001, 33, 100-104.	2.3	76
39	Pore Size Distribution and Hydraulic Conductivity Affected by Tillage in Northwestern Canada. Soil Science Society of America Journal, 1996, 60, 1197-1201.	1.2	73
40	Soil Organic Carbon Sequestration in Cotton Production Systems of the Southeastern United States. Journal of Environmental Quality, 2006, 35, 1374-1383.	1.0	72
41	Grassland–Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality. Environmental Management, 2015, 56, 1065-1077.	1.2	72
42	Human-Soil Relations are Changing Rapidly: Proposals from SSSA's Cross-Divisional Soil Change Working Group. Soil Science Society of America Journal, 2011, 75, 2079-2084.	1.2	70
43	Global Prospects Rooted in Soil Science. Soil Science Society of America Journal, 2011, 75, 1-8.	1.2	67
44	Relationships of chloroform fumigation–incubation to soil organic matter pools. Soil Biology and Biochemistry, 1999, 31, 395-405.	4.2	66
45	Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant and Soil, 2011, 339, 401-412.	1.8	66
46	Energy output:input ratio of maize and sorghum management systems in eastern Nebraska. Agriculture, Ecosystems and Environment, 1995, 53, 271-278.	2.5	65
47	Crop and cattle production responses to tillage and cover crop management in an integrated crop–livestock system in the southeastern USA. European Journal of Agronomy, 2014, 57, 62-70.	1.9	64
48	Surface Soil Changes during Twelve Years of Pasture Management in the Southern Piedmont USA. Soil Science Society of America Journal, 2010, 74, 2131-2141.	1.2	62
49	Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform fumigation–extraction. Soil Biology and Biochemistry, 2001, 33, 1501-1507.	4.2	57
50	Assessing biological soil quality with chloroform fumigation-incubation: Why subtract a control?. Canadian Journal of Soil Science, 1999, 79, 521-528.	0.5	56
51	Sorghum, wheat and soybean production as affected by long-term tillage, crop sequence and N fertilization. Plant and Soil, 1995, 173, 55-65.	1.8	52
52	Management effects on C accumulation and loss in soils of the southern Appalachian Piedmont of Georgia. Soil and Tillage Research, 1998, 47, 245-251.	2.6	51
53	Soil Fumigation within Monoculture and Rotations: Response of Corn and Mycorrhizae. Agronomy Journal, 1993, 85, 1174-1180.	0.9	45
54	Soilâ€Test Biological Activity with the Flush of CO ₂ : III. Corn Yield Responses to Applied Nitrogen. Soil Science Society of America Journal, 2018, 82, 708-721.	1.2	45

#	Article	IF	CITATIONS
55	Sidedress Nitrogen Application Rates to Sorghum Intercropped with Tropical Perennial Grasses. Agronomy Journal, 2016, 108, 433-447.	0.9	43
56	Production and Soil Responses to Intercropping of Forage Grasses with Corn and Soybean Silage. Agronomy Journal, 2016, 108, 2541-2553.	0.9	42
57	Soil C extracted with water or K ₂ SO ₄ : pH effect on determination of microbial biomass. Canadian Journal of Soil Science, 1999, 79, 529-533.	0.5	41
58	Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC. Soil Science Society of America Journal, 2007, 71, 1174-1185.	1.2	41
59	Production, nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean. Nutrient Cycling in Agroecosystems, 2017, 108, 35-54.	1.1	41
60	Soilâ€Test Biological Activity with the Flush of CO ₂ : I. C and N Characteristics of Soils in Corn Production. Soil Science Society of America Journal, 2018, 82, 685-695.	1.2	41
61	Modeling soil carbon sequestration in agricultural lands of Mali. Agricultural Systems, 2007, 94, 63-74.	3.2	40
62	Will we allow soil carbon to feed our needs?. Carbon Management, 2010, 1, 237-251.	1.2	40
63	Bermudagrass Management in the Southern Piedmont USA. Soil Science Society of America Journal, 2005, 69, 1455-1462.	1.2	39
64	Tillage and Residue Management Effects on Soil Organic Matter. Advances in Agroecology, 2004, , .	0.3	38
65	Introducing the GRACEnet/REAP Data Contribution, Discovery, and Retrieval System. Journal of Environmental Quality, 2013, 42, 1274-1280.	1.0	37
66	Comparison of microbiological methods for evaluating quality and fertility of soil. Biology and Fertility of Soils, 1995, 19, 135-140.	2.3	36
67	Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant and Soil, 2006, 289, 309-320.	1.8	36
68	Phosphorus and potassium cycling in a long-term no-till integrated soybean-beef cattle production system under different grazing intensities insubtropics. Nutrient Cycling in Agroecosystems, 2017, 108, 21-33.	1.1	36
69	Does grazing of cover crops impact biologically active soil carbon and nitrogen fractions under inversion or no tillage management?. Journal of Soils and Water Conservation, 2015, 70, 365-373.	0.8	35
70	Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutrient Cycling in Agroecosystems, 2017, 108, 85-100.	1.1	34
71	Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Research, 2021, 260, 107985.	2.3	34
72	Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois. Applied Soil Ecology, 2015, 85, 86-93.	2.1	31

#	Article	IF	CITATIONS
73	Nutrients released by Urochloa cover crops prior to soybean. Nutrient Cycling in Agroecosystems, 2019, 113, 267-281.	1.1	31
74	Alterations in canola residue composition during decomposition. Soil Biology and Biochemistry, 1996, 28, 1289-1295.	4.2	30
75	Grazing land intensification effects on soil C dynamics in aggregate size fractions of a Spodosol. Geoderma, 2014, 230-231, 185-193.	2.3	29
76	Short-term Responses of Soil C and N Fractions to Tall Fescue Endophyte Infection. Plant and Soil, 2006, 282, 153-164.	1.8	28
77	Quantification of Soil Permanganate Oxidizable C (POXC) Using Infrared Spectroscopy. Soil Science Society of America Journal, 2017, 81, 277-288.	1.2	28
78	Carbon and nitrogen cycling in an integrated soybean-beef cattle production system under different grazing intensities. Pesquisa Agropecuaria Brasileira, 2015, 50, 967-978.	0.9	27
79	Soil phosphorus compounds in integrated crop-livestock systems of subtropical Brazil. Geoderma, 2016, 274, 88-96.	2.3	27
80	Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutrient Cycling in Agroecosystems, 2019, 115, 347-372.	1.1	27
81	Spatial Distribution of Extractable Phosphorus, Potassium, and Magnesium as Influenced by Fertilizer and Tall Fescue Endophyte Status. Agronomy Journal, 2000, 92, 981-986.	0.9	26
82	Stratification ratios in a rainfed Mediterranean Vertisol in wheat under different tillage, rotation and N fertilisation rates. Soil and Tillage Research, 2012, 119, 7-12.	2.6	26
83	Lamb production responses to grass grazing in a companion crop system with corn silage and oversowing of yellow oat in a tropical region. Agricultural Systems, 2017, 151, 1-11.	3.2	26
84	Soilâ€Test Biological Activity with the Flush of CO ₂ : IV. Fallâ€Stockpiled Tall Fescue Yield Response to Applied Nitrogen. Agronomy Journal, 2018, 110, 2033-2049.	0.9	26
85	Grass roots of soil carbon sequestration. Carbon Management, 2012, 3, 9-11.	1.2	25
86	Aligning Land Use with Land Potential: The Role of Integrated Agriculture. Agricultural and Environmental Letters, 2017, 2, 170007.	0.8	25
87	Corn intercropped with tropical perennial grasses as affected by sidedress nitrogen application rates. Nutrient Cycling in Agroecosystems, 2020, 116, 223-244.	1.1	25
88	Pasture and cattle responses to fertilization and endophyte association in the southern Piedmont, USA. Agriculture, Ecosystems and Environment, 2006, 114, 217-225.	2.5	24
89	Introduction to "Symposium: Integrated Crop-Livestock Systems for Profit and Sustainability― Agronomy Journal, 2007, 99, 323-324.	0.9	24
90	Soilâ€test biological activity with the flush of CO ₂ : V. Validation of nitrogen prediction for corn production. Agronomy Journal, 2020, 112, 2188-2204.	0.9	23

#	Article	IF	Citations
91	Emergence of the Global Research Alliance on Agricultural Greenhouse Gases. Carbon Management, 2011, 2, 209-214.	1.2	22
92	Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma, 2015, 259-260, 251-258.	2.3	22
93	Evaluation of Soil Processing Conditions on Mineralizable C and N across a Textural Gradient. Soil Science Society of America Journal, 2018, 82, 354-361.	1.2	22
94	Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agriculture, Ecosystems and Environment, 2020, 295, 106917.	2.5	22
95	<i>Bradyrhizobium japonicum</i> Survival in and Soybean Inoculation with Fluid Gels. Applied and Environmental Microbiology, 1989, 55, 617-622.	1.4	22
96	Stability of soil organic matter under long-term biosolids application. Applied Soil Ecology, 2013, 64, 223-227.	2.1	21
97	Soil Texture and Organic Carbon Fractions Predicted from Nearâ€Infrared Spectroscopy and Geostatistics. Soil Science Society of America Journal, 2017, 81, 1222-1234.	1.2	21
98	Cover cropping and conservation tillage improve soil health in the southeastern United States. Agronomy Journal, 2022, 114, 296-316.	0.9	21
99	Water infiltration and surface-soil structural properties as influenced by animal traffic in the Southern Piedmont USA. Renewable Agriculture and Food Systems, 2012, 27, 256-265.	0.8	20
100	Upland rice intercropped with forage grasses in an integrated crop-livestock system: Optimizing nitrogen management and food production. Field Crops Research, 2021, 261, 108008.	2.3	20
101	Does cattle grazing of dual-purpose wheat accelerate the rate of stubble decomposition and nutrients released?. Agriculture, Ecosystems and Environment, 2014, 190, 37-42.	2.5	18
102	Soilâ€profile distribution of organic C and N after 6 years of tillage and grazing management. European Journal of Soil Science, 2013, 64, 558-566.	1.8	17
103	Soil Carbon Fractions from an Alluvial Soil Texture Gradient in North Carolina. Soil Science Society of America Journal, 2017, 81, 1096-1106.	1.2	17
104	Carbon Sequestration and Land Degradation. , 2007, , 343-358.		17
105	Mineralization of carbon and nitrogen from cowpea leaves decomposing in soils with different levels of microbial biomass. Biology and Fertility of Soils, 1995, 19, 100-102.	2.3	16
106	Principles of integrated agricultural systems. Renewable Agriculture and Food Systems, 2008, 23, 263-264.	0.8	16
107	Agriculture and Climate Change. , 2012, , 3-11.		16
108	Soil-profile distribution of inorganic N during 6 years of integrated crop-livestock management. Soil and Tillage Research, 2013, 134, 83-89.	2.6	16

#	Article	IF	Citations
109	Soilâ€Test Biological Activity with the Flush of CO ₂ : II. Greenhouse Growth Bioassay from Soils in Corn Production. Soil Science Society of America Journal, 2018, 82, 696-707.	1.2	16
110	Focusing the future of farming on agroecology. Agricultural and Environmental Letters, 2020, 5, e20034.	0.8	16
111	Seasonal dynamics of active soil carbon and nitrogen pools under intensive cropping in conventional and no tillage. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 343-349.	0.4	14
112	Temporal Dynamics of Total and Particulate Organic Carbon and Nitrogen in Cover Crop Grazed Cropping Systems. Soil Science Society of America Journal, 2014, 78, 1404-1413.	1.2	14
113	Carryover of N-fertilization from corn to pasture in an integrated crop-livestock system. Archives of Agronomy and Soil Science, 2021, 67, 687-702.	1.3	14
114	Soil organic carbon sequestration calculated from depth distribution. Soil Science Society of America Journal, 2021, 85, 158-171.	1.2	14
115	Pursuing robust agroecosystem functioning through effective soil organic carbon management. Carbon Management, 2013, 4, 43-56.	1.2	13
116	Soil chemical properties under noâ€tillage as affected by agricultural trophic complexity. European Journal of Soil Science, 2020, 71, 1090-1105.	1.8	13
117	Leaching and Binding of Fumonisins in Soil Microcosms. Journal of Agricultural and Food Chemistry, 2003, 51, 685-690.	2.4	12
118	Holding water with capacity to target porosity. Agricultural and Environmental Letters, 2020, 5, e20029.	0.8	12
119	Soilâ€test biological activity with the flush of CO2: VII. Validating nitrogen needs for fallâ€stockpiled forage. Agronomy Journal, 2020, 112, 2240-2255.	0.9	12
120	Soil carbon and nitrogen fractions and physical attributes affected by soil acidity amendments under no-till on Oxisol in Brazil. Geoderma Regional, 2021, 24, e00347.	0.9	12
121	Bermudagrass Management in the Southern Piedmont USA. Journal of Environmental Quality, 2003, 32, 1316.	1.0	11
122	Tall Fescue Persists and Cattle Perform Well on a Novelâ€Endophyte Association in the Southern Piedmont USA. Forage and Grazinglands, 2009, 7, 1-8.	0.2	11
123	Conservation of Soil Organic Carbon and Nitrogen Fractions in a Tallgrass Prairie in Oklahoma. Agronomy, 2019, 9, 204.	1.3	11
124	Building Agricultural Resilience With Conservation Pasture-Crop Rotations., 2019,, 109-121.		11
125	Bermudagrass Management in the Southern Piedmont U.S. IV. Soil Surface Nitrogen Pools. Scientific World Journal, The, 2001, 1, 673-681.	0.8	10
126	Soil Responses to Bioenergy Crop Production in the North Carolina Piedmont. Agronomy Journal, 2017, 109, 1368-1378.	0.9	10

#	Article	IF	CITATIONS
127	Soilâ€test biological activity with the flush of CO ₂ : VIII. Soil type and management diversity. Soil Science Society of America Journal, 2020, 84, 1658-1674.	1.2	10
128	Comparison of two alkali trap methods for measuring the flush of CO 2. Agronomy Journal, 2020, 112, 1279-1286.	0.9	10
129	INTEGRATED CROP-LIVESTOCK SYSTEMS: LESSONS FROM NEW YORK, BRITISH COLUMBIA, AND THE SOUTH-EASTERN UNITED STATES. Frontiers of Agricultural Science and Engineering, 2021, 8, 81.	0.9	10
130	Cattle performance and production when grazing Bermudagrass at two forage mass levels in the southern Piedmont1,2. Journal of Animal Science, 2007, 85, 1340-1350.	0.2	9
131	Comments on "Noâ€Tillage and Soilâ€Profile Carbon Sequestration: An Onâ€Farm Assessment†Soil Science Society of America Journal, 2009, 73, 686-687.	1.2	9
132	Tall Fescue Management in the Piedmont: Sequestration of Soil Organic Carbon and Total Nitrogen. Soil Science Society of America Journal, 2012, 76, 1016-1026.	1.2	9
133	Soil carbon and nitrogen mineralization after the initial flush of CO ₂ . Agricultural and Environmental Letters, 2020, 5, e20006.	0.8	9
134	Soil meanâ€weight diameter and stability index under contrasting tillage systems for cotton production in North Carolina. Soil Science Society of America Journal, 2022, 86, 1327-1337.	1.2	9
135	USDA-ARS Global Change Research on Rangelands and Pasturelands. Rangelands, 2005, 27, 36-42.	0.9	8
136	Soil CO2 evolution: Response from arginine additions. Applied Soil Ecology, 2009, 42, 324-327.	2.1	8
137	Calibration of the soil conditioning index (SCI) to soil organic carbon in the southeastern USA. Plant and Soil, 2011, 338, 223-232.	1.8	8
138	Cattle grazing effects on the environment: Greenhouse gas emissions and carbon footprint. , 2020, , $11\text{-}34$.		8
139	Soil mass and volume affect soilâ€ŧest biological activity estimates. Soil Science Society of America Journal, 2020, 84, 502-511.	1.2	8
140	Rootâ€zone enrichment of carbon, nitrogen, and soilâ€test biological activity under cotton systems in North Carolina. Soil Science Society of America Journal, 2021, 85, 1785-1798.	1.2	8
141	Introduction to Symposium â€" Microbial Biomass: Measurement and Role in Soil Quality. Canadian Journal of Soil Science, 1999, 79, 505-506.	0.5	7
142	Forage dynamics in mixed tall fescue–bermudagrass pastures of the Southern Piedmont USA. Agriculture, Ecosystems and Environment, 2013, 168, 37-45.	2.5	7
143	MAGGnet: An international network to foster mitigation of agricultural greenhouse gases. Carbon Management, 2016, 7, 243-248.	1.2	7
144	Rainfed Farming Systems in the USA. , 2011, , 511-560.		7

#	Article	IF	Citations
145	Toward agricultural sustainability through integrated crop–livestock systems. III. Social aspects. Renewable Agriculture and Food Systems, 2014, 29, 192-194.	0.8	6
146	Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses. European Journal of Agronomy, 2014, 57, 1-3.	1.9	6
147	Nitrogen-Fertilized Systems of Maize Intercropped With Tropical Grasses for Enhanced Yields and Estimated Land Use and Meat Production. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
148	Soil organic matter, texture, and drying temperature effects on water content. Soil Science Society of America Journal, 2022, 86, 1086-1095.	1.2	6
149	Soil Organic Carbon under Pasture Management. , 2012, , 93-110.		5
150	WEED COMPETITION WITH SOYBEAN IN NO-TILLAGE AGROFORESTRY AND SOLE-CROP SYSTEMS IN SUBTROPICAL BRAZIL. Planta Daninha, 2017, 35, .	0.5	5
151	Carbon concentration predicts soil contamination of plant residues. Agricultural and Environmental Letters, 2020, 5, e20037.	0.8	5
152	Soil health conditions under cotton production in North Carolina. Agronomy Journal, 2021, 113, 2132-2149.	0.9	5
153	Tall fescue management and environmental influences on soil, surface residue, and forage properties. Agronomy Journal, 2021, 113, 2029-2043.	0.9	5
154	Rootâ€zone soil organic carbon enrichment is sensitive to land management across soil types and regions. Soil Science Society of America Journal, 2022, 86, 79-90.	1.2	5
155	Stocker performance and production in mixed tall fescue–bermudagrass pastures of the Southern Piedmont USA. Renewable Agriculture and Food Systems, 2013, 28, 160-172.	0.8	4
156	Soil carbon and nitrogen fractions after 19 years of farming systems research in the Coastal Plain of North Carolina. Soil Science Society of America Journal, 2020, 84, 856-876.	1.2	4
157	Soil organic C affected by dryâ€season management of noâ€till soybean crop rotations in the tropics. Plant and Soil, 2021, 462, 577-590.	1.8	4
158	Farmer Participation in Research and Extension. Agroecology and Sustainable Food Systems, 1992, 2, 9-30.	0.9	3
159	Grass-based Farming Systems: Soil Conservation and Environmental Quality. Assa, Cssa and Sssa, 0, , 121-136.	0.6	3
160	Detection of Biochar Carbon by Fluorescence and Near-Infrared-Based Chemometrics. Aquatic Geochemistry, 2018, 24, 345-361.	1.5	3
161	Soilâ€test biological activity with the flush of CO 2 : VI. Economics of optimized nitrogen inputs for corn. Agronomy Journal, 2020, 112, 2848-2865.	0.9	3
162	Nutritive value of fallâ€stockpiled tall fescue pastures on southeastern U.S. farms. Agronomy Journal, 2021, 113, 610-622.	0.9	3

#	Article	IF	Citations
163	Soil nutrient distribution on cattle farms in three physiographic regions of North Carolina. Agronomy Journal, 2021, 113, 590-609.	0.9	3
164	Relationships between N, P, and K in corn biomass for assessing the carryover effects of winter pasture to corn. European Journal of Agronomy, 2021, 129, 126317.	1.9	3
165	Stratification of Soil Porosity and Organic Matter. Encyclopedia of Earth Sciences Series, 2011, , 858-861.	0.1	3
166	Introduction to themed sectionâ€"supporting ecosystem services with conservation agricultural approaches. Renewable Agriculture and Food Systems, 2013, 28, 99-101.	0.8	2
167	Biogeochemical Processes Underpin Ecosystem Services. , 0, , 79-99.		2
168	Calcium and Magnesium Released from Residues in an Integrated Crop-Livestock System under Different Grazing Intensities. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	2
169	Overcoming Competition From Intercropped Forages on Upland Rice With Optimized Nitrogen Input to Food Production in Tropical Region. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	2
170	Comparison of Tillage Types and Frequencies for Cotton on Southern Piedmont Soil. Agronomy Journal, 2003, 95, 1281-1287.	0.9	1
171	Conference Report: EuroSoil2012: Soil science for the benefit of mankind and environment. Carbon Management, 2012, 3, 441-443.	1.2	1
172	Linking Soil Organic Carbon and Environmental Quality through Conservation Tillage and Residue Management. SSSA Special Publication Series, 0, , 263-289.	0.2	1
173	Soilâ€ŧest biological activity with shortâ€ŧerm and longâ€ŧerm carbon contributions. Agricultural and Environmental Letters, 2020, 5, e20035.	0.8	1
174	Assessing Remote Sensing Vegetation Index Sensitivities for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving Poultry Manuresheds. Remote Sensing, 2021, 13, 521.	1.8	1
175	Greenhouse growth bioassay confirms soil nitrogen availability indicated by the flush of CO2. Biology and Fertility of Soils, 2022, 58, 91-103.	2.3	1
176	Is There Evidence for Significant Tillage-Induced Soil Organic C Sequestration below the Plow Layer?., 2021,, 1-23.		1
177	Greenhouse gas emissions from soil under changing environmental conditions. European Journal of Soil Science, 2013, 64, 547-549.	1.8	0
178	Know Your Community: Soil Carbon and Greenhouse Gas Emissions. CSA News, 2015, 60, 25-25.	0.1	0
179	38 Enhancing production efficiency on southern beef farms with an interactive extension approach using forage management. Journal of Animal Science, 2019, 97, 70-70.	0.2	0
180	317 Cattle and carbon on pastures – hearsay or evidence?. Journal of Animal Science, 2020, 98, 52-52.	0.2	0