
Wesley H Bernskoetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7534329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst. Journal of the American Chemical Society, 2014, 136, 10234-10237.	13.7	377
2	Iron catalyzed CO ₂ hydrogenation to formate enhanced by Lewis acid co-catalysts. Chemical Science, 2015, 6, 4291-4299.	7.4	285
3	Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. Accounts of Chemical Research, 2017, 50, 1049-1058.	15.6	207
4	Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst. ACS Catalysis, 2015, 5, 2404-2415.	11.2	184
5	Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO ₂ Hydrogenation. Inorganic Chemistry, 2016, 55, 8225-8233.	4.0	124
6	Selective Iron-Catalyzed <i>N</i> -Formylation of Amines using Dihydrogen and Carbon Dioxide. ACS Catalysis, 2018, 8, 1338-1345.	11.2	101
7	Synthesis and Structure of Six-Coordinate Iron Borohydride Complexes Supported by PNP Ligands. Inorganic Chemistry, 2014, 53, 2133-2143.	4.0	97
8	Selective Iron-Catalyzed Deaminative Hydrogenation of Amides. Organometallics, 2017, 36, 409-416.	2.3	84
9	Lewis Acid Induced β-Elimination from a Nickelalactone: Efforts toward Acrylate Production from CO2and Ethylene. Organometallics, 2013, 32, 2152-2159.	2.3	68
10	Iron-Catalyzed Amide Formation from the Dehydrogenative Coupling of Alcohols and Secondary Amines. Organometallics, 2017, 36, 2020-2025.	2.3	60
11	Kinetics and Mechanism of Molybdenum-Mediated Acrylate Formation from Carbon Dioxide and Ethylene. Organometallics, 2011, 30, 520-527.	2.3	59
12	Enhanced CO ₂ electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst. Chemical Communications, 2015, 51, 5947-5950.	4.1	57
13	Catalytic Formic Acid Dehydrogenation and CO2 Hydrogenation Using Iron PNRP Pincer Complexes with Isonitrile Ligands. Organometallics, 2018, 37, 3846-3853.	2.3	57
14	Sequential Hydrogenation of CO ₂ to Methanol Using a Pincer Iron Catalyst. Organometallics, 2019, 38, 3084-3091.	2.3	56
15	Effect of Sodium Cation on Metallacycle βâ€Hydride Elimination in CO ₂ –Ethylene Coupling to Acrylates. Chemistry - A European Journal, 2014, 20, 3205-3211.	3.3	54
16	Acceleration of CO ₂ insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics. Chemical Science, 2018, 9, 6629-6638.	7.4	53
17	The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides. ACS Catalysis, 2018, 8, 8751-8762.	11.2	53
18	Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines. Chemical Science, 2018. 9, 4003-4008.	7.4	42

#	Article	IF	CITATIONS
19	Understanding the Individual and Combined Effects of Solvent and Lewis Acid on CO ₂ Insertion into a Metal Hydride. Journal of the American Chemical Society, 2019, 141, 10520-10529.	13.7	40
20	The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 17350-17360.	13.7	39
21	Functionalization of Carbon Dioxide with Ethylene at Molybdenum Hydride Complexes. Organometallics, 2013, 32, 3969-3979.	2.3	38
22	A Computational Investigation of the Insertion of Carbon Dioxide into Four―and Fiveâ€Coordinate Iridium Hydrides. European Journal of Inorganic Chemistry, 2013, 2013, 4032-4041.	2.0	35
23	C–CN Bond Activation of Acetonitrile using Cobalt(I). Organometallics, 2012, 31, 1588-1590.	2.3	34
24	Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO ₂ Hydrogenation. Inorganic Chemistry, 2018, 57, 1590-1597.	4.0	31
25	Additiveâ€Free Formic Acid Dehydrogenation Using a Pincerâ€5upported Iron Catalyst. ChemCatChem, 2020, 12, 1934-1938.	3.7	28
26	Synthesis and Catalytic Activity of PNP-Supported Iron Complexes with Ancillary Isonitrile Ligands. Organometallics, 2017, 36, 3995-4004.	2.3	27
27	Ancillary Ligand Effects on Carbon Dioxide-Ethylene Coupling at Zerovalent Molybdenum. Organometallics, 2014, 33, 3425-3432.	2.3	25
28	Reductive functionalization of carbon dioxide to methyl acrylate at zerovalent tungsten. Dalton Transactions, 2012, 41, 10763.	3.3	22
29	Synthesis and Reactivity of 1,2-Bis(di- <i>iso</i> -propylphosphino)benzene Nickel Complexes: A Study of Catalytic CO ₂ –Ethylene Coupling. Organometallics, 2018, 37, 3573-3580.	2.3	16
30	Effect of Nucleophilicity on the Kinetics of CO ₂ Insertion into Pincer-Supported Nickel Complexes. Organometallics, 2018, 37, 3649-3653.	2.3	13
31	Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics, 2020, 39, 3562-3571.	2.3	13
32	Rational selection of co-catalysts for the deaminative hydrogenation of amides. Chemical Science, 2020, 11, 2225-2230.	7.4	13
33	Control of Catalyst Isomers Using an <i>N</i> -Phenyl-Substituted RN(CH ₂ CH ₂ P ⁱ Pr ₂) ₂ Pincer Ligand in CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Inorganic Chemistry, 2022, 61, 643-656.	4.0	13
34	Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions. ACS Catalysis, 2021, 11, 10631-10646.	11.2	11
35	Intermolecular Methyl Group Exchange and Reversible P–Me Bond Cleavage at Cobalt(III) Dimethyl Halide Species. Organometallics, 2013, 32, 798-806.	2.3	7
36	Dehydrogenative Synthesis of Carbamates from Formamides and Alcohols Using a Pincer-Supported Iron Catalyst. ACS Catalysis, 2021, 11, 10614-10624.	11.2	7

#	Article	IF	CITATIONS
37	Iron, Cobalt, and Nickel Complexes Supported by a iPrPNPhP Pincer Ligand. Organometallics, 0, , .	2.3	7
38	Comparative Coordination Chemistry of PNP and SNS Pincer Ruthenium Complexes. Organometallics, 2021, 40, 4066-4076.	2.3	6
39	Ancillary Ligand and Base Influences on Nickel-Catalyzed Coupling of CO ₂ and Ethylene to Acrylate. Organometallics, 2020, 39, 1573-1579.	2.3	5
40	Coordination Chemistry of Iridium Phosphine–Sulfonate Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 157-163.	3.7	3
41	Synthesis of organometallic pincer-supported cobalt(II) complexes. Polyhedron, 2020, 177, 114308.	2.2	3