
## James T Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753393/publications.pdf Version: 2024-02-01



IAMES T KELLY

| #  | Article                                                                                                                                                                                                                                               | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mimicking atmospheric photochemical modeling with a deep neural network. Atmospheric Research, 2022, 265, 105919.                                                                                                                                     | 1.8 | 8         |
| 2  | Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties. Journal of Geophysical Research D: Atmospheres, 2022, 127, 1-16.                                                                            | 1.2 | 1         |
| 3  | Examining PM2.5 concentrations and exposure using multiple models. Environmental Research, 2021, 196, 110432.                                                                                                                                         | 3.7 | 20        |
| 4  | Furthering a partnership: Air quality modeling and improving public health. Journal of the Air and<br>Waste Management Association, 2021, 71, 682-688.                                                                                                | 0.9 | 1         |
| 5  | Monthly Patterns of Ammonia Over the Contiguous United States at 2â€km Resolution. Geophysical<br>Research Letters, 2021, 48, e2020GL090579.                                                                                                          | 1.5 | 16        |
| 6  | Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design<br>and Rationale for a Comprehensive Study. Bulletin of the American Meteorological Society, 2021, 102,<br>E2012-E2033.                               | 1.7 | 14        |
| 7  | The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale<br>Air Quality (CMAQ) modeling system version 5.3.2. Geoscientific Model Development, 2021, 14, 3407-3420.                                       | 1.3 | 20        |
| 8  | Predicting the Nonlinear Response of PM2.5 and Ozone to Precursor Emission Changes with a Response Surface Model. Atmosphere, 2021, 12, 1044.                                                                                                         | 1.0 | 9         |
| 9  | A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous<br>US: performance evaluation and impacts of chemistry–meteorology feedbacks on air quality.<br>Geoscientific Model Development, 2021, 14, 7189-7221. | 1.3 | 5         |
| 10 | Assessing NO <sub>2</sub> Concentration and Model Uncertainty with High Spatiotemporal<br>Resolution across the Contiguous United States Using Ensemble Model Averaging. Environmental<br>Science & Technology, 2020, 54, 1372-1384.                  | 4.6 | 155       |
| 11 | An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level<br>Ozone in the Contiguous United States. Environmental Science & Technology, 2020, 54, 11037-11047.                                                      | 4.6 | 114       |
| 12 | Data Assimilation of Ambient Concentrations of Multiple Air Pollutants Using an<br>Emission-Concentration Response Modeling Framework. Atmosphere, 2020, 11, 1289.                                                                                    | 1.0 | 9         |
| 13 | The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 2020, 20, 4809-4888.                                                                                                                                              | 1.9 | 327       |
| 14 | Deep Learning for Prediction of the Air Quality Response to Emission Changes. Environmental Science<br>& Technology, 2020, 54, 8589-8600.                                                                                                             | 4.6 | 58        |
| 15 | Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China<br>using a genetic algorithm in machine learning. Science of the Total Environment, 2020, 722, 137701.                                        | 3.9 | 19        |
| 16 | An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environment International, 2019, 130, 104909.                                                                                 | 4.8 | 370       |
| 17 | Assessing PM2.5 model performance for the conterminous U.S. with comparison to model performance statistics from 2007-2015. Atmospheric Environment, 2019, 214, 116872.                                                                               | 1.9 | 30        |
| 18 | Methods, availability, and applications of PM <sub>2.5</sub> exposure estimates derived from ground measurements, satellite, and atmospheric models. Journal of the Air and Waste Management Association, 2019, 69, 1391-1414.                        | 0.9 | 73        |

JAMES T KELLY

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards. Atmospheric Environment: X, 2019, 2, 100019.                                                                               | 0.8 | 15        |
| 20 | Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China. Atmospheric Chemistry and Physics, 2019, 19, 13627-13646.                                              | 1.9 | 33        |
| 21 | Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a<br>model-monitor data fusion approach. Journal of Environmental Management, 2019, 233, 489-498.                                                                    | 3.8 | 44        |
| 22 | Characterizing CO and NO <sub><i>y</i></sub> Sources and Relative Ambient Ratios in the Baltimore<br>Area Using Ambient Measurements and Source Attribution Modeling. Journal of Geophysical Research<br>D: Atmospheres, 2018, 123, 3304-3320.               | 1.2 | 14        |
| 23 | The estimated change in the level and distribution of PM2.5-attributable health impacts in the United States: 2005–2014. Environmental Research, 2018, 167, 506-514.                                                                                         | 3.7 | 53        |
| 24 | Modeling NH 4 NO 3 Over the San Joaquin Valley During the 2013 DISCOVERâ€AQ Campaign. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 4727-4745.                                                                                               | 1.2 | 18        |
| 25 | A method to predict PM 2.5 resulting from compliance with national ambient air quality standards.<br>Atmospheric Environment, 2017, 162, 1-10.                                                                                                               | 1.9 | 19        |
| 26 | Simulating the phase partitioning of NH3, HNO3, and HCl with size-resolved particles over northern<br>Colorado in winter. Atmospheric Environment, 2016, 131, 67-77.                                                                                         | 1.9 | 15        |
| 27 | Evaluation of the Community Multiscale Air Quality (CMAQ) model v5.0 against size-resolved measurements of inorganic particle composition across sites in North America. Geoscientific Model Development, 2015, 8, 2877-2892.                                | 1.3 | 60        |
| 28 | Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.                                                                                  | 1.9 | 48        |
| 29 | Examining single-source secondary impacts estimated from brute-force, decoupled direct method, and advanced plume treatment approaches. Atmospheric Environment, 2015, 111, 10-19.                                                                           | 1.9 | 18        |
| 30 | Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2. Geoscientific Model Development, 2015, 8, 3733-3746.                                                                                                | 1.3 | 47        |
| 31 | The Aquatic Acidification Index: A New Regulatory Metric Linking Atmospheric and Biogeochemical<br>Models to Assess Potential Aquatic Ecosystem Recovery. Water, Air, and Soil Pollution, 2014, 225, 1.                                                      | 1.1 | 10        |
| 32 | Single source impacts estimated with photochemical model source sensitivity and apportionment approaches. Atmospheric Environment, 2014, 96, 266-274.                                                                                                        | 1.9 | 26        |
| 33 | Photochemical grid model performance with varying horizontal grid resolution and sub-grid plume<br>treatment for the Martins Creek near-field SO2 study. Atmospheric Environment, 2014, 99, 148-158.                                                         | 1.9 | 9         |
| 34 | Measurements and modeling of the inorganic chemical composition of fine particulate matter and<br>associated precursor gases in California's San Joaquin Valley during CalNex 2010. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 6853-6866. | 1.2 | 18        |
| 35 | Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley<br>of California during CalNex-2010. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3600-3614.                                               | 1.2 | 51        |
| 36 | Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010<br>CalNex period in California. Atmospheric Environment, 2013, 80, 299-309.                                                                              | 1.9 | 41        |

JAMES T KELLY

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in shortâ€range weather forecasts during the May 2003 aerosol IOP. Journal of Advances in Modeling Earth Systems, 2012, 4, . | 1.3 | 11        |
| 38 | Challenges to Modeling "Cold Pool―Meteorology Associated with High Pollution Episodes.<br>Environmental Science & Technology, 2011, 45, 7118-7119.                                                                            | 4.6 | 33        |
| 39 | Simulating Particle Size Distributions over California and Impact on Lung Deposition Fraction.<br>Aerosol Science and Technology, 2011, 45, 148-162.                                                                          | 1.5 | 21        |
| 40 | Photochemical Modeling in California with Two Chemical Mechanisms: Model Intercomparison and<br>Response to Emission Reductions. Journal of the Air and Waste Management Association, 2011, 61,<br>559-572.                   | 0.9 | 27        |
| 41 | Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale<br>Air Quality (CMAQ) model. Geoscientific Model Development, 2010, 3, 257-273.                                           | 1.3 | 113       |
| 42 | Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7.<br>Geoscientific Model Development, 2010, 3, 205-226.                                                                         | 1.3 | 404       |
| 43 | Aerosol thermodynamics of potassium salts, double salts, and water content near the eutectic.<br>Atmospheric Environment, 2008, 42, 3717-3728.                                                                                | 1.9 | 17        |
| 44 | Influence of dust composition on cloud droplet formation. Atmospheric Environment, 2007, 41, 2904-2916.                                                                                                                       | 1.9 | 124       |
| 45 | Water uptake by aerosol: Water activity in supersaturated potassium solutions and deliquescence as a function of temperature. Atmospheric Environment, 2006, 40, 4450-4468.                                                   | 1.9 | 24        |
| 46 | Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol. Journal of Geophysical Research, 2005, 110, .                                                                         | 3.3 | 44        |
| 47 | Inertial Particle Deposition in a Monkey Nasal Mold Compared with that in Human Nasal Replicas.<br>Inhalation Toxicology, 2005, 17, 823-830.                                                                                  | 0.8 | 28        |
| 48 | Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. Part I:<br>Inertial Regime Particles. Aerosol Science and Technology, 2004, 38, 1063-1071.                                              | 1.5 | 213       |
| 49 | Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. Part II:<br>Ultrafine Particles. Aerosol Science and Technology, 2004, 38, 1072-1079.                                                   | 1.5 | 109       |
| 50 | Nasal Molds as Predictors of Fine and Coarse Particle Deposition in Rat Nasal Airways. Inhalation<br>Toxicology, 2003, 15, 859-875.                                                                                           | 0.8 | 9         |
| 51 | Respiratory Deposition and Inhalability of Monodisperse Aerosols in Long-Evans Rats. Toxicological Sciences, 2003, 71, 104-111.                                                                                               | 1.4 | 45        |
| 52 | DEPOSITION OF FINE AND COARSE AEROSOLS IN A RAT NASAL MOLD. Inhalation Toxicology, 2001, 13, 577-588.                                                                                                                         | 0.8 | 22        |
| 53 | Particle image velocimetry measurements in complex geometries. Experiments in Fluids, 2000, 29, 91-95.                                                                                                                        | 1.1 | 130       |
| 54 | Detailed flow patterns in the nasal cavity. Journal of Applied Physiology, 2000, 89, 323-337.                                                                                                                                 | 1.2 | 210       |