
Rolf Gubner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical investigation into the dynamic mechanism of CO2 corrosion product film formation on the carbon steel under the water-condensation condition. Electrochimica Acta, 2021, 390, 138880.	5.2	13
2	Effect of Pretreatment Process on Scale Formation in the Re-Boiler Section of Monoethylene Glycol Regeneration Plant. IOP Conference Series: Materials Science and Engineering, 2019, 495, 012106.	0.6	2
3	Corrosion of Carbon Steel during High Temperature Regeneration of Monoethylene Clycol in the Presence of Methyldiethanolamine. Industrial & Engineering Chemistry Research, 2019, 58, 14814-14822.	3.7	1
4	Performance of erythorbic acid as an oxygen scavenger in salted fresh and degraded monoethylene glycol under a magnetic memory effect. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2364.	1.5	1
5	Evaluating chemical-scale-inhibitor performance in external magnetic fields using a dynamic scale loop. Journal of Petroleum Science and Engineering, 2019, 179, 1063-1077.	4.2	13
6	Effect of wettability on particle settlement behavior within Mono-Ethylene Glycol regeneration pre-treatment systems. Journal of Petroleum Science and Engineering, 2019, 179, 831-840.	4.2	10
7	Removal of Organic Acids during Monoethylene Glycol Distillation and Reclamation To Minimize Long-Term Accumulation. Industrial & Engineering Chemistry Research, 2019, 58, 6730-6739.	3.7	6
8	The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions. Journal of Petroleum Science and Engineering, 2019, 173, 158-169.	4.2	21
9	Measurement of mono ethylene glycol volume fraction at varying ionic strengths and temperatures. Journal of Natural Gas Science and Engineering, 2018, 54, 320-327.	4.4	10
10	Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2018, 523, 75-85.	9.4	26
11	Experimental Vapor–Liquid Equilibrium Data for Binary Mixtures of Methyldiethanolamine in Water and Ethylene Glycol under Vacuum. Journal of Chemical & Engineering Data, 2018, 63, 1752-1760.	1.9	12
12	Influence of magnetic fields on calcium carbonate scaling in aqueous solutions at 150 ŰC and 1 bar. Journal of Colloid and Interface Science, 2018, 509, 472-484.	9.4	32
13	The Effect of Monoethylene Glycol on Calcium Carbonate Solubility at High Temperatures. Industrial & Engineering Chemistry Research, 2018, 57, 15909-15915.	3.7	5
14	The effect of regenerated MEG on hydrate inhibition performance over multiple regeneration cycles. Fuel, 2018, 222, 638-647.	6.4	26
15	Operation of a MEG pilot regeneration system for organic acid and alkalinity removal during MDEA to FFCI switchover. Journal of Petroleum Science and Engineering, 2018, 169, 1-14.	4.2	11
16	Acid Dissociation Constant (p <i>K</i> _a) of Common Monoethylene Glycol (MEG) Regeneration Organic Acids and Methyldiethanolamine at Varying MEG Concentration, Temperature, and Ionic Strength. Journal of Chemical & Engineering Data, 2018, 63, 2904-2913.	1.9	11
17	Corrosion of carbon steel under condensing water and monoethylene glycol. Corrosion Science, 2018, 143, 10-22.	6.6	11
18	Study of the Top-of-the-Line Corrosion Using a Novel Electrochemical Probe. Corrosion, 2018, 74, 588-598	1.1	7

ROLF GUBNER

#	Article	IF	CITATIONS
19	Performance of erythorbic acid as an oxygen scavenger in thermally aged lean MEG. Journal of Petroleum Science and Engineering, 2018, 170, 911-921.	4.2	12
20	Hydrate Phase Equilibria for Methyldiethanolamine and Empirical Modeling for Prediction. Journal of Chemical & Engineering Data, 2018, 63, 3559-3565.	1.9	10
21	Recovery of mono-ethylene glycol by distillation and the impact of dissolved salts evaluated through simulation of field data. Journal of Natural Gas Science and Engineering, 2017, 44, 214-232.	4.4	37
22	Simultaneous Hydrate and Corrosion Inhibition with Modified Poly(vinyl caprolactam) Polymers. Energy & Fuels, 2017, 31, 6724-6731.	5.1	46
23	Effects of Thermally Degraded Monoethylene Glycol with Methyl Diethanolamine and Film-Forming Corrosion Inhibitor on Gas Hydrate Kinetics. Energy & Fuels, 2017, 31, 6397-6412.	5.1	19
24	Influence of Regenerated Monoethylene Glycol on Natural Gas Hydrate Formation. Energy & Fuels, 2017, 31, 12914-12931.	5.1	17
25	Analytical Techniques for Analyzing Thermally Degraded Monoethylene Glycol with Methyl Diethanolamine and Film Formation Corrosion Inhibitor. Energy & Fuels, 2016, 30, 10937-10949.	5.1	27
26	Condensation corrosion of carbon steel at low to moderate surface temperature and iron carbonate precipitation kinetics. Corrosion Science, 2016, 111, 139-150.	6.6	21
27	Inhibition effects of thermally degraded MEG on hydrate formation for gas systems. Journal of Petroleum Science and Engineering, 2015, 135, 608-617.	4.2	54
28	Synchrotron far-infrared spectroscopy of corroded steel surfaces using a variable angle of incidence. Journal of Synchrotron Radiation, 2014, 21, 580-585.	2.4	1
29	Adsorption of Corrosion Inhibitor 1-Dodecylpyridinium Chloride on Carbon Steel Studied by <i>in Situ</i> AFM and Electrochemical Methods. Industrial & Engineering Chemistry Research, 2014, 53, 5858-5865.	3.7	60
30	Filtration–UV irradiation as an option for mitigating the risk of microbiologically influenced corrosion of subsea construction alloys in seawater. Corrosion Science, 2014, 79, 89-99.	6.6	35
31	Synchrotron infrared microspectroscopy study of the orientation of an organic surfactant on a microscopically rough steel surface. Vibrational Spectroscopy, 2013, 68, 204-211.	2.2	9
32	Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine. Corrosion Science, 2013, 72, 108-117.	6.6	52
33	Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater. Corrosion Science, 2013, 67, 242-255.	6.6	56
34	Inhibition of Under-Deposit Corrosion of Carbon Steel by Thiobenzamide. Journal of the Electrochemical Society, 2013, 160, C432-C440.	2.9	24
35	Crevice Corrosion Studies on Corrosion Resistant Alloys in Stagnant Natural Seawater. Advanced Materials Research, 2012, 610-613, 276-279.	0.3	0
36	Systematic study of the corrosion properties of selected high-resistance alloys in natural seawater. Corrosion Science, 2012, 64, 8-16.	6.6	24

ROLF GUBNER

#	Article	IF	CITATIONS
37	Short term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria. Electrochimica Acta, 2012, 77, 348-362.	5.2	35
38	Geobacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor. Electrochemistry Communications, 2009, 11, 1476-1481.	4.7	15
39	Characterization of Phases in Duplex Stainless Steel by Magnetic Force Microscopy/Scanning Kelvin Probe Force Microscopy. Electrochemical and Solid-State Letters, 2008, 11, C41.	2.2	51
40	The Initial Steps of Atmospheric Corrosion on Magnesium Alloy AZ91D. Journal of the Electrochemical Society, 2007, 154, C684.	2.9	55
41	The effect of <i>Pseudomonas</i> NCIMB 2021 biofilm on AISI 316 stainless steel. Biofouling, 2000, 15, 3-12.	2.2	30
42	The effect of extracellular polymeric substances on the attachment of <i>Pseudomonas</i> NCIMB 2021 to AISI 304 and 316 stainless steel. Biofouling, 2000, 15, 25-36.	2.2	52
43	Characterisation of conditioning layers formed by exopolymeric substances of <i>Pseudomonas</i> NCIMB 2021 on surfaces of AISI 316 stainless steel. Biofouling, 2000, 16, 93-104.	2.2	33
44	Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry. Journal of Microbiological Methods, 1999, 36, 3-10.	1.6	68
45	Direct involvement of an extracellular complex produced by a marine sulfateâ€reducing bacterium in deterioration of steel. Geomicrobiology Journal, 1998, 15, 121-134.	2.0	43
46	Microbial Corrosion Resistance of Stainless Steels for Marine Energy Installations. Advanced Materials Research, 0, 347-353, 3591-3596.	0.3	5