
Bruno Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7533291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geoscientific Model Development, 2022, 15, 2673-2710.	3.6	13
2	First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data. Elementa, 2021, 9, .	3.2	7
3	Identification of Short and Longâ€Lived Atmospheric Trace Gases From IASI Space Observations. Geophysical Research Letters, 2021, 48, e2020GL091742.	4.0	9
4	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 2021, 593, 233-237.	27.8	71
5	Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033475.	3.3	28
6	Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environmental Research Letters, 2021, 16, 055017.	5.2	65
7	Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants. Atmospheric Chemistry and Physics, 2021, 21, 9909-9930.	4.9	7
8	The Diel Cycle of NH ₃ Observed From the FYâ€4A Geostationary Interferometric Infrared Sounder (GIIRS). Geophysical Research Letters, 2021, 48, e2021GL093010.	4.0	11
9	The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. Atmospheric Chemistry and Physics, 2021, 21, 11257-11288.	4.9	8
10	Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere, 2021, 12, 946.	2.3	13
11	Atmospheric Composition Applications with IASI and next-generation hyperspectral infrared sounders (IASI-NG and IRS). , 2021, , .		1
12	A statistical analysis of time trends in atmospheric ethane. Climatic Change, 2020, 162, 105-125.	3.6	7
13	Spaceborne Measurements of Formic and Acetic Acids: A Global View of the Regional Sources. Geophysical Research Letters, 2020, 47, e2019GL086239.	4.0	21
14	A Decadal Data Set of Global Atmospheric Dust Retrieved From IASI Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1618-1647.	3.3	32
15	Acetone Atmospheric Distribution Retrieved From Space. Geophysical Research Letters, 2019, 46, 2884-2893.	4.0	18
16	Atmospheric Implications of Large C ₂ ₅ Alkane Emissions From the U.S. Oil and Gas Industry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1148-1169.	3.3	12
17	The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 1695-1723.	3.6	51
18	A General Framework for Global Retrievals of Trace Gases From IASI: Application to Methanol, Formic Acid, and PAN. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,963.	3.3	38

Bruno Franco

#	Article	IF	CITATIONS
19	Revisiting global fossil fuel and biofuel emissions of ethane. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2493-2512.	3.3	43
20	Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations. Atmospheric Chemistry and Physics, 2016, 16, 10911-10925.	4.9	28
21	Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46°â€ [−] N. Atmospheric Chemistry and Physics, 2016, 16, 4171-4189.	4.9	17
22	Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America. Environmental Research Letters, 2016, 11, 044010.	5.2	82
23	Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nature Geoscience, 2016, 9, 490-495.	12.9	149
24	Retrieval of ammonia from ground-based FTIR solar spectra. Atmospheric Chemistry and Physics, 2015, 15, 12789-12803.	4.9	32
25	Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with CEOS-Chem and IMAGES model simulations. Atmospheric Measurement Techniques, 2015, 8, 1733-1756.	3.1	38
26	Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 160, 36-49.	2.3	32
27	Long-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5° N, 8.0° E): optimisation of the retrieval strategy, comparison with model simulations and independent observations. Atmospheric Measurement Techniques, 2014, 7, 3861-3872.	3.1	5
28	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107. Self-proadening coefficients and improved line intensities for the 1427 band of ethylene near symplymath	27.8	110
29	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0019.gif" overflow="scroll"> <mml:mn>10.5</mml:mn> <mml:mspace width="0.25em"></mml:mspace> <mml:mi mathvariant="normal">14<mml:mi mathvariant="normal">m</mml:mi>, and impact on ethylene retrievals from Jungfraujoch solar spectra. Journal of Quantitative Spectroscopy and</mml:mi 	2.3	28
30	Radiative Transfer, 2014, 148, 177-185. Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere, 2013, 7, 1-18.	3.9	74
31	Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 2013, 7, 469-489.	3.9	325
32	Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere, 2012, 6, 695-711.	3.9	71
33	Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Climate Dynamics, 2011, 36, 1897-1918.	3.8	29
34	Estimation of the Sea Level Rise by 2100 Resulting from Changes in the Surface Mass Balance of the Greenland Ice Sheet. , 0, , .		11