
Diego L GarcÃ-a-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7533010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of the Presence of Hazelnut Oil in Olive Oil by FT-Raman and FT-MIR Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53, 6201-6206.	2.4	149
2	Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Science, 2008, 80, 315-325.	2.7	136
3	Characterization of French and Spanish dry-cured hams: influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. Meat Science, 2005, 69, 635-645.	2.7	112
4	Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends in Food Science and Technology, 2020, 105, 483-493.	7.8	111
5	Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Research International, 2013, 54, 2025-2038.	2.9	110
6	Validation of SPME–GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta, 2015, 134, 394-401.	2.9	89
7	Research in Olive Oil: Challenges for the Near Future. Journal of Agricultural and Food Chemistry, 2010, 58, 12569-12577.	2.4	87
8	Virgin olive oil - Chemical implications on quality and health. European Journal of Lipid Science and Technology, 2008, 110, 602-607.	1.0	80
9	Evaluation of Virgin Olive Oil Thermal Deterioration by Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 2009, 57, 10505-10511.	2.4	80
10	A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. European Food Research and Technology, 2001, 213, 349-355.	1.6	79
11	Volatile Compounds Characterizing Tunisian Chemlali and Chétoui Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2007, 55, 7852-7858.	2.4	70
12	Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition. Food Chemistry, 2015, 169, 350-357.	4.2	68
13	Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chemistry, 2017, 230, 108-116.	4.2	67
14	Using 1H and 13C NMR techniques and artificial neural networks to detect the adulteration of olive oil with hazelnut oil. European Food Research and Technology, 2004, 219, 545-548.	1.6	61
15	Perspectives on Quantitative Mid-FTIR Spectroscopy in Relation to Edible Oil and Lubricant Analysis: Evolution and Integration of Analytical Methodologies. Food Analytical Methods, 2008, 1, 153-163.	1.3	60
16	Quality Characterization of the New Virgin Olive Oil Var. Sikitita by Phenols and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 8357-8364.	2.4	59
17	NIR spectroscopy and chemometrics for the typification of Spanish wine vinegars with a protected designation of origin. Food Control, 2018, 89, 108-116.	2.8	59
18	Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS, Talanta, 2018, 187, 133-141.	2.9	57

#	Article	IF	CITATIONS
19	Impact of the Suppression of Lipoxygenase and Hydroperoxide Lyase on the Quality of the Green Odor in Green Leaves. Journal of Agricultural and Food Chemistry, 2005, 53, 1648-1655.	2.4	56
20	In-Depth Assessment of Analytical Methods for Olive Oil Purity, Safety, and Quality Characterization. Journal of Agricultural and Food Chemistry, 2015, 63, 4509-4526.	2.4	53
21	Towards new analyses of aroma and volatiles to understand sensory perception of olive oil. European Journal of Lipid Science and Technology, 2012, 114, 1114-1125.	1.0	52
22	Detection of Vinegary Defect in Virgin Olive Oils by Metal Oxide Sensors. Journal of Agricultural and Food Chemistry, 2002, 50, 1809-1814.	2.4	51
23	ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control, 2017, 78, 230-237.	2.8	48
24	Characterisation and attempted differentiation of European and extra-European olive oils using stable isotope ratio analysis. Food Chemistry, 2019, 276, 782-789.	4.2	48
25	Sensors: From biosensors to the electronic nose. Grasas Y Aceites, 2002, 53, .	0.3	48
26	Virgin Olive Oil Quality Classification Combining Neural Network and MOS Sensors. Journal of Agricultural and Food Chemistry, 2003, 51, 3515-3519.	2.4	47
27	Volatile and Amino Acid Profiling of Dry Cured Hams from Different Swine Breeds and Processing Methods. Molecules, 2013, 18, 3927-3947.	1.7	46
28	A tentative characterization of white dry-cured hams from Teruel (Spain) by SPME-GC. Food Chemistry, 2006, 97, 621-630.	4.2	45
29	Chemical changes of thermoxidized virgin olive oil determined by excitation–emission fluorescence spectroscopy (EEFS). Food Research International, 2012, 45, 103-108.	2.9	44
30	Coupling MOS sensors and gas chromatography to interpret the sensor responses to complex food aroma: Application to virgin olive oil. Food Chemistry, 2010, 120, 572-579.	4.2	43
31	Comparative Study of Virgin Olive Oil Quality from Single Varieties Cultivated in Chile and Spain. Journal of Agricultural and Food Chemistry, 2010, 58, 12899-12905.	2.4	42
32	Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT - Food Science and Technology, 2020, 121, 108936.	2.5	42
33	Analysis of Virgin Olive Oil Volatiles by a Novel Electronic Nose Based on a Miniaturized SAW Sensor Array Coupled with SPME Enhanced Headspace Enrichment. Journal of Agricultural and Food Chemistry, 2004, 52, 7475-7479.	2.4	41
34	Stepwise geographical traceability of virgin olive oils by chemical profiles using artificial neural network models. European Journal of Lipid Science and Technology, 2009, 111, 1003-1013.	1.0	40
35	Detection of defective virgin olive oils by metal-oxide sensors. European Food Research and Technology, 2002, 215, 118-123.	1.6	39
36	Characterization of olive paste volatiles to predict the sensory quality of virgin olive oil. European Journal of Lipid Science and Technology, 2007, 109, 663-672.	1.0	38

#	Article	IF	CITATIONS
37	Detection of the Presence of Refined Hazelnut Oil in Refined Olive Oil by Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 2007, 55, 2068-2071.	2.4	36
38	Thermal Deterioration of Virgin Olive Oil Monitored by ATR-FTIR Analysis of Trans Content. Journal of Agricultural and Food Chemistry, 2009, 57, 9997-10003.	2.4	36
39	Virgin olive oil stability study by mesh cell-FTIR spectroscopy. Talanta, 2017, 167, 453-461.	2.9	35
40	Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data. Journal of Agricultural and Food Chemistry, 2015, 63, 10477-10483.	2.4	34
41	An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods, 2020, 9, 657.	1.9	34
42	Classification of different quality virgin olive oils by metal-oxide sensors. European Food Research and Technology, 2004, 218, 484-487.	1.6	33
43	Soft-deodorization of virgin olive oil: Study of the changes of quality and chemical composition. Food Chemistry, 2017, 220, 42-50.	4.2	31
44	A comparative study of the volatile profile of wine vinegars with protected designation of origin by headspace stir bar sorptive extraction. Food Research International, 2019, 123, 298-310.	2.9	28
45	Mapping Brain Activity Induced by Olfaction of Virgin Olive Oil Aroma. Journal of Agricultural and Food Chemistry, 2011, 59, 10200-10210.	2.4	27
46	Why Tyrosol Derivatives Have to Be Quantified in the Calculation of "Olive Oil Polyphenols―Content to Support the Health Claim Provisioned in the EC Reg. 432/2012. European Journal of Lipid Science and Technology, 2018, 120, 1800098.	1.0	26
47	Determination of Free Fatty Acids in Edible Oils with the Use of a Variable Filter Array IR Spectrometer. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 599-604.	0.8	25
48	Interlaboratory evaluation of dry-cured hams (from France and Spain) by assessors from two different nationalities. Meat Science, 2006, 73, 521-528.	2.7	24
49	Volatile Compound Biosynthesis by Green Leaves from anArabidopsis thalianaHydroperoxide Lyase Knockout Mutant. Journal of Agricultural and Food Chemistry, 2006, 54, 8199-8205.	2.4	23
50	Determining nutritional labeling data for fats and oils by ¹ H NMR. European Journal of Lipid Science and Technology, 2010, 112, 439-451.	1.0	23
51	The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Scientific Reports, 2017, 7, 10505.	1.6	23
52	Tracking Sensory Characteristics of Virgin Olive Oils During Storage: Interpretation of Their Changes from a Multiparametric Perspective. Molecules, 2020, 25, 1686.	1.7	23
53	A Novel Wire Mesh "Cell―for Studying Lipid Oxidative Processes by Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2009, 63, 518-527.	1.2	22
54	Alignment and Proficiency of Virgin Olive Oil Sensory Panels: The OLEUM Approach. Foods, 2020, 9, 355.	1.9	22

#	Article	IF	CITATIONS
55	In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for "Olive Oil Polyphenols― Molecules, 2019, 24, 1044.	1.7	21
56	Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. Foods, 2020, 9, 1509.	1.9	21
57	Flash Gas Chromatography in Tandem with Chemometrics: A Rapid Screening Tool for Quality Grades of Virgin Olive Oils. Foods, 2020, 9, 862.	1.9	21
58	Peer inter-laboratory validation study of a harmonized SPME-GC-FID method for the analysis of selected volatile compounds in virgin olive oils. Food Control, 2021, 123, 107823.	2.8	21
59	Implementing Dynamic Headspace With SPME Sampling of Virgin Olive Oil Volatiles: Optimization, Quality Analytical Study, and Performance Testing. Journal of Agricultural and Food Chemistry, 2019, 67, 2086-2097.	2.4	20
60	Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods, 2020, 9, 1846.	1.9	20
61	¹³ Câ€NMR as a primary method for determining saturates, <i>cis</i> ―and <i>trans</i> â€monounsaturates and polyunsaturates in fats and oils for nutritional labeling purposes. European Journal of Lipid Science and Technology, 2009, 111, 612-622.	1.0	19
62	Phenolic profile of virgin olive oils with and without sensory defects: Oils with non-oxidative defects exhibit a considerable concentration of phenols. European Journal of Lipid Science and Technology, 2016, 118, 299-307.	1.0	18
63	Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). The Pros of a Fit for the Purpose Ultra High Performance Liquid Chromatography (UHPLC) Procedure. Molecules, 2019, 24, 2429.	1.7	17
64	Real time monitoring of the combined effect of chlorophyll content and light filtering packaging on virgin olive oil photo-stability using mesh cell-FTIR spectroscopy. Food Chemistry, 2019, 295, 94-100.	4.2	17
65	Does "Best Before―Date Embody Extra-Virgin Olive Oil Freshness?. Journal of Agricultural and Food Chemistry, 2014, 62, 554-556.	2.4	16
66	Olive Oil., 2009,, 33-72.		15
67	Describing the chemical singularity of the Spanish protected designations of origin for virgin olive oils in relation to oils from neighbouring areas. Grasas Y Aceites, 2012, 63, 26-34.	0.3	15
68	Study of Volatile Compounds of Virgin Olive Oils with †Frostbitten Olives' Sensory Defect. Journal of Agricultural and Food Chemistry, 2017, 65, 4314-4320.	2.4	15
69	Design and in-house validation of a portable system for the determination of free acidity in virgin olive oil. Food Control, 2019, 104, 208-216.	2.8	15
70	1H–NMR fingerprinting and supervised pattern recognition to evaluate the stability of virgin olive oil during storage. Food Control, 2021, 123, 107831.	2.8	15
71	Time Course Analysis of Fractionated Thermoxidized Virgin Olive Oil by FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 3212-3218.	2.4	14
72	Sensor responses to fat food aroma: A comprehensive study of dry-cured ham typicality. Talanta, 2014, 120, 342-348.	2.9	14

#	Article	IF	CITATIONS
73	Sampling methods for the study of volatile profile of PDO wine vinegars. A comparison using multivariate data analysis. Food Research International, 2018, 105, 880-896.	2.9	13
74	Storage and Preservation of Fats and Oils. , 2019, , 605-618.		13
75	Validation of a Method Based on Triglycerides for the Detection of Low Percentages of Hazelnut Oil in Olive Oil by Column Liquid Chromatography. Journal of AOAC INTERNATIONAL, 2007, 90, 1346-1353.	0.7	12
76	A study of the differences between trade standards inside and outside Europe. Grasas Y Aceites, 2017, 68, 210.	0.3	12
77	Principles, Performance, and Applications of Spectral Reconstitution (SR) in Quantitative Analysis of Oils by Fourier Transform Infrared Spectroscopy (FT-IR). Applied Spectroscopy, 2013, 67, 448-456.	1.2	11
78	Chemical characterization of organic and non-organic virgin olive oils. OCL - Oilseeds and Fats, Crops and Lipids, 2014, 21, D506.	0.6	11
79	Collaborative peer validation of a harmonized SPME-GC-MS method for analysis of selected volatile compounds in virgin olive oils. Food Control, 2022, 135, 108756.	2.8	11
80	A fuzzy filter to study the selectivity and sensitivity of a SPME enhanced SAW sensor system characterizing virgin olive oil aroma. Sensors and Actuators B: Chemical, 2006, 116, 49-54.	4.0	10
81	Predicting extra virgin olive oil freshness during storage by fluorescence spectroscopy. Grasas Y Aceites, 2017, 68, 219.	0.3	10
82	Photooxidation Effect in Liquid Lipid Matrices: Answers from an Innovative FTIR Spectroscopy Strategy with "Mesh Cell―Incubation. Journal of Agricultural and Food Chemistry, 2018, 66, 3541-3549.	2.4	9
83	Andalusian Protected Designations of Origin of Virgin Olive Oil: The Role of Chemical Composition in Their Authentication. European Journal of Lipid Science and Technology, 2019, 121, 1800133.	1.0	9
84	Olive Oil Characterization and Traceability. , 2013, , 431-478.		9
85	Use of polar and nonpolar fractions as additional information sources for studying thermoxidized virgin olive oils by FTIR. Grasas Y Aceites, 2014, 65, e030.	0.3	8
86	Assessment of Vibrational Spectroscopy Performance in Geographical Identification of Virgin Olive Oils: A World Level Study. European Journal of Lipid Science and Technology, 2019, 121, 1900035.	1.0	8
87	Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). Extraction Solvent. European Journal of Lipid Science and Technology, 2018, 120, 1800099.	1.0	7
88	Formulations of Rancid and Winey-Vinegary Artificial Olfactory Reference Materials (AORMs) for Virgin Olive Oil Sensory Evaluation. Foods, 2020, 9, 1870.	1.9	7
89	Infrared, Raman, and Fluorescence Spectroscopies: Methodologies and Applications. , 2013, , 335-393.		7
90	Contributing to interpret sensory attributes qualifying Iberian hams from the volatile profile. Grasas Y Aceites, 2009, 60, 277-283.	0.3	7

#	Article	IF	CITATIONS
91	Performance testing of new artificial olfactory reference materials in virgin olive oil sensory assessment. International Journal of Gastronomy and Food Science, 2021, 25, 100402.	1.3	6
92	Characterization of Virgin Olive Oils with Two Kinds of â€~Frostbitten Olives' Sensory Defect. Journal of Agricultural and Food Chemistry, 2016, 64, 5590-5597.	2.4	6
93	The Impact of Mild Frost Occurring at Different Harvesting Times on the Volatile and Phenolic Composition of Virgin Olive Oil. Antioxidants, 2022, 11, 852.	2.2	5
94	A viability study of C–O isotope fingerprint for different geographical provenances of Spanish wine vinegars. European Food Research and Technology, 2018, 244, 1159-1167.	1.6	3
95	Automated Acid Content Determination in Lubricants by FTIR Spectroscopy as an Alternative to Acid Number Determination. Journal of ASTM International, 2009, 6, 1-12.	0.2	3
96	An International Survey on Olive Oils Quality and Traceability: Opinions from the Involved Actors. Foods, 2022, 11, 1045.	1.9	2
97	A neuroimaging study of pleasant and unpleasant olfactory perceptions of virgin olive oil. Grasas Y Aceites, 2016, 67, 157.	0.3	1
98	VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for A Rapid Authentication of Wine Vinegars. Chemosensors, 2021, 9, 296.	1.8	1
99	Evaluation of the methods based on triglycerides and sterols for the detection of hazelnut oil in olive oil. Grasas Y Aceites, 2007, 58, .	0.3	Ο