Chin-Fa Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532879/publications.pdf

Version: 2024-02-01

279798 223800 2,202 51 23 46 h-index citations g-index papers 62 62 62 1963 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Transitionâ€Metalâ€Catalyzed CS Bond Coupling Reaction. Chemistry - an Asian Journal, 2014, 9, 706-722.	3.3	399
2	Synthesis of CuO on mesoporous silica and its applications for coupling reactions of thiols with aryl iodides. Chemical Communications, 2010, 46, 282-284.	4.1	147
3	Iron-catalyzed thioetherification of thiols with aryl iodides. Chemical Communications, 2009, , 4450.	4.1	136
4	Synthesis of Alkenyl Sulfides Through the Iron-Catalyzed Cross-Coupling Reaction of Vinyl Halides with Thiols. Journal of Organic Chemistry, 2012, 77, 6100-6106.	3.2	99
5	Efficient Copper-Catalyzed S-Vinylation of Thiols with Vinyl Halides. Organic Letters, 2011, 13, 5204-5207.	4.6	93
6	Metal-free cross-coupling reaction of aldehydes with disulfides by using DTBP as an oxidant under solvent-free conditions. Green Chemistry, 2014, 16, 2644-2652.	9.0	89
7	Synthesis of Aryl Thioethers through the <i>N</i> -Chlorosuccinimide-Promoted Cross-Coupling Reaction of Thiols with Grignard Reagents. Journal of Organic Chemistry, 2012, 77, 10369-10374.	3.2	87
8	N-Chlorosuccinimide-promoted synthesis of thiophosphates from thiols and phosphonates under mild conditions. Green Chemistry, 2014, 16, 357-364.	9.0	85
9	Highly regioselective synthesis of aryl chalcogenides through C–H functionalization of arenes. Chemical Communications, 2012, 48, 8440.	4.1	80
10	Synthesis of thioesters through copper-catalyzed coupling of aldehydes with thiols in water. Green Chemistry, 2013, 15, 2476.	9.0	79
11	Iron-Catalyzed Synthesis of Thioesters from Thiols and Aldehydes in Water. Journal of Organic Chemistry, 2014, 79, 4561-4568.	3.2	68
12	Metal-free sp3Câ€"H functionalization: a novel approach for the syntheses of selenide ethers and thioesters from methyl arenes. Chemical Communications, 2014, 50, 11374-11377.	4.1	66
13	A general rhodium-catalyzed cross-coupling reaction of thiols with aryl iodides. Tetrahedron Letters, 2012, 53, 4365-4367.	1.4	53
14	An Efficient Copperâ€Catalyzed Crossâ€Coupling Reaction of Thiols with Aryl Iodides. European Journal of Organic Chemistry, 2011, 2011, 1776-1781.	2.4	52
15	Engineered C–S Bond Construction. Topics in Current Chemistry, 2018, 376, 25.	5. 8	49
16	Manganeseâ€Catalyzed Crossâ€Coupling of Thiols with Aryl Iodides. Chemistry - an Asian Journal, 2013, 8, 1029-1034.	3.3	45
17	Cul/Oxalic Diamide atalyzed Cross oupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal, 2017, 23, 10087-10091.	3.3	44
18	Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in <i>Nicotiana benthamiana</i> by suppressing <i>NbOMT1</i> Journal of Experimental Botany, 2016, 67, 4415-4425.	4.8	41

#	Article	IF	Citations
19	Electrochemical Dehydrogenative Phosphorylation of Thiols. Organic Letters, 2019, 21, 7833-7836.	4.6	39
20	K2S2O8/I2 promoted syntheses of α-thio-β-dicarbonyl compounds via oxidative C–S coupling reactions under transition metal-free and solvent-free conditions. RSC Advances, 2015, 5, 44299-44305.	3.6	36
21	Green Catalysts Derived from Agricultural and Industrial Waste Products: The Preparation of Phenols from CsOH and Aryl Iodides using CuO on Mesoporous Silica. European Journal of Organic Chemistry, 2011, 2011, 7288-7293.	2.4	33
22	Efficient Copperâ€Catalyzed Crossâ€Coupling Reaction of Alkynes with Aryl Iodides. European Journal of Organic Chemistry, 2010, 2010, 4368-4371.	2.4	25
23	A General Procedure for the Regioselective Synthesis of Aryl Thioethers and Aryl Selenides Through C–H Activation of Arenes. European Journal of Organic Chemistry, 2013, 2013, 3910-3918.	2.4	25
24	Visibleâ€Light Photoredoxâ€Catalyzed Thioacetalization of Aldehydes Under Metalâ€Free and Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2019, 361, 1597-1605.	4.3	25
25	Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Science Advances, 2020, 6, .	10.3	25
26	Syntheses of Thioethers and Selenide Ethers from Anilines. Journal of Organic Chemistry, 2019, 84, 6223-6231.	3.2	23
27	Carbonâ€Sulfur Bond Constructions: From Transitionâ€Metal Catalysis to Sustainable Catalysis. Chemical Record, 2021, 21, 3674-3688.	5. 8	23
28	DTBP/TBHPâ€Promoted Hydroacylation of Unactivated Alkenes. Asian Journal of Organic Chemistry, 2016, 5, 1452-1456.	2.7	22
29	Cross-Linked Fluorescent Supramolecular Nanoparticles for Intradermal Controlled Release of Antifungal Drug—A Therapeutic Approach for Onychomycosis. ACS Nano, 2018, 12, 6851-6859.	14.6	19
30	Palladium-Catalyzed Synthesis of 2,3-Diaryl- <i>N</i> -methylindoles from <i>ortho</i> -Alkynylanilines and Aryl Pinacol Boronic Esters. Organic Letters, 2018, 20, 6872-6876.	4.6	18
31	Transitionâ€Metalâ€Free Syntheses of Pyridineâ€Containing Thioethers Through Twoâ€Fold CS Bond Formation. Asian Journal of Organic Chemistry, 2014, 3, 1197-1203.	2.7	15
32	Syntheses of selenoesters through C–H selenation of aldehydes with diselenides under metal-free and solvent-free conditions. RSC Advances, 2014, 4, 41237-41244.	3.6	15
33	Palladium-Catalyzed <i>ortho</i> àê"C-H Arylation of Acetophenone Oxime Ethers with Aryl Pinacol Boronic Esters. Journal of Organic Chemistry, 2017, 82, 10070-10076.	3.2	15
34	A palladium-catalyzed oxidative cross-coupling reaction between aryl pinacol boronates and H-phosphonates in ethanol. RSC Advances, 2017, 7, 30214-30220.	3.6	13
35	Microwaveâ€assisted Synthesis of Thioesters from Aldehydes and Thiols in Water. Journal of the Chinese Chemical Society, 2018, 65, 24-27.	1.4	12
36	The journey of Câ€"S bond formation from metal catalysis to electrocatalysis. New Journal of Chemistry, 2021, 46, 15-38.	2.8	12

#	Article	IF	CITATIONS
37	Nickel-Catalyzed Cross-Coupling of Aryl Redoxactive Esters with Aryl Zinc Reagents. ACS Catalysis, 2019, 9, 8862-8866.	11.2	11
38	<i>Para</i> â€Selective Câ^'H Thioetherification. Asian Journal of Organic Chemistry, 2017, 6, 1667-1673.	2.7	10
39	Palladium atalyzed Decarbonylative Thioetherification of 2â€Pyridyl Thioesters. Asian Journal of Organic Chemistry, 2020, 9, 1826-1833.	2.7	10
40	Copperâ€Catalyzed Crossâ€CouplingLigandâ€Free Conditions Reaction of Thiols with Aryl Iodides under. Journal of the Chinese Chemical Society, 2014, 61, 967-974.	1.4	9
41	Blue LEDâ€Promoted Oxathiacetalization of Aldehydes and Ketones. European Journal of Organic Chemistry, 2020, 2020, 2542-2552.	2.4	8
42	Supramolecular Nanosubstrateâ€Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. Small, 2021, 17, 2100546.	10.0	8
43	Microwave-Assisted Efficient Synthesis of Aryl Thioethers through C-H Functionalization of Arenes. Synlett, 2013, 24, 2320-2326.	1.8	7
44	Ligand-Free Copper-Catalyzed Cross-Coupling Reaction of Alkynes with Aryl Iodides and Vinyl Halides. Synlett, 2014, 25, 443-447.	1.8	7
45	Blue LED-Promoted Syntheses of Phosphorothioates and Phosphorodithioates. Journal of Organic Chemistry, 2022, 87, 8858-8870.	3.2	7
46	Peracetic Acid Mediated sp2 C–H Selenation of Arenes. Synlett, 2016, 27, 1557-1562.	1.8	6
47	Iodineâ€Mediated Direct Generation of <i>o</i> â€Quinone Methides at Room Temperature: A Facile Protocol for the Synthesis of <i>ortho</i> â€Hydroxybenzyl Thioethers. Chemistry - an Asian Journal, 2018, 13, 2475-2483.	3.3	5
48	Microwave-Assisted Copper-Catalyzed Cross-Coupling Reaction of Alkynes with Aryl Iodides and Vinyl Halides. Synthesis, 2012, 44, 1507-1510.	2.3	4
49	PIFA-Mediated Synthesis of Acylsulfenic Acid Alkyl Esters and Benzoyl Alkyl Disulfides from Thioacids. Synthesis, 2016, 48, 4459-4464.	2.3	2
50	Copper-catalyzed cross-coupling reaction of thiols with aryl halides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 678-681.	1.6	1
51	Front Cover Picture: Visibleâ€Light Photoredoxâ€Catalyzed Thioacetalization of Aldehydes Under Metalâ€Free and Solventâ€Free Conditions (Adv. Synth. Catal. 7/2019). Advanced Synthesis and Catalysis, 2019, 361, 1463-1463.	4.3	0