Sanjay G Manohar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532814/publications.pdf Version: 2024-02-01

SANIAY C. MANOHAR

#	Article	lF	CITATIONS
1	Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control. Current Biology, 2015, 25, 1707-1716.	1.8	272
2	Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex, 2015, 69, 40-46.	1.1	211
3	The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry,the, 2019, 6, 235-246.	3.7	162
4	Hippocampal volume across age: Nomograms derived from over 19,700 people in UK Biobank. Neurolmage: Clinical, 2019, 23, 101904.	1.4	130
5	Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease. Brain, 2018, 141, 1455-1469.	3.7	106
6	Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy. Cerebral Cortex, 2016, 26, bhv247.	1.6	97
7	Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson's disease. Brain, 2016, 139, 2706-2721.	3.7	96
8	Neural mechanisms of attending to items in working memory. Neuroscience and Biobehavioral Reviews, 2019, 101, 1-12.	2.9	95
9	Identification of Myocardial Disarray inÂPatients With HypertrophicÂCardiomyopathy and Ventricular Arrhythmias. Journal of the American College of Cardiology, 2019, 73, 2493-2502.	1.2	88
10	Characterization of reward and effort mechanisms in apathy. Journal of Physiology (Paris), 2015, 109, 16-26.	2.1	83
11	Impulsivity and apathy in Parkinson's disease. Journal of Neuropsychology, 2013, 7, 255-283.	0.6	81
12	The role of cognitive effort in subjective reward devaluation and risky decision-making. Scientific Reports, 2015, 5, 16880.	1.6	81
13	Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Communications, 2022, 4, fcab295.	1.5	72
14	Causal Evidence for a Privileged Working Memory State in Early Visual Cortex. Journal of Neuroscience, 2014, 34, 158-162.	1.7	69
15	Rapid forgetting results from competition over time between items in visual working memory Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 528-536.	0.7	67
16	Distinct Motivational Effects of Contingent and Noncontingent Rewards. Psychological Science, 2017, 28, 1016-1026.	1.8	65
17	Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. Nature Communications, 2020, 11, 4340.	5.8	59
18	Dopamine Modulates Risk-Taking as a Function of Baseline Sensation-Seeking Trait. Journal of Neuroscience, 2013, 33, 12982-12986.	1.7	56

#	Article	IF	CITATIONS
19	Flexibility of representational states in working memory. Frontiers in Human Neuroscience, 2014, 8, 853.	1.0	51
20	Human ventromedial prefrontal lesions alter incentivisation by reward. Cortex, 2016, 76, 104-120.	1.1	46
21	Dopamine and reward hypersensitivity in Parkinson's disease with impulse control disorder. Brain, 2020, 143, 2502-2518.	3.7	46
22	Contrast Affects the Strength of Synesthetic Colors. Cortex, 2006, 42, 184-194.	1.1	42
23	Modulation of the pupillary response by the content of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22802-22810.	3.3	42
24	Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms. Journal of Neuroscience, 2020, 40, 3604-3620.	1.7	42
25	Motivation dynamically increases noise resistance by internal feedback during movement. Neuropsychologia, 2019, 123, 19-29.	0.7	35
26	Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nature Communications, 2021, 12, 4593.	5.8	32
27	Past rewards capture spatial attention and action choices. Experimental Brain Research, 2013, 230, 291-300.	0.7	31
28	Fractionating the Neurocognitive Mechanisms Underlying Working Memory: Independent Effects of Dopamine and Parkinson's Disease. Cerebral Cortex, 2017, 27, 5727-5738.	1.6	30
29	Voluntary modulation of saccadic peak velocity associated with individual differences in motivation. Cortex, 2020, 122, 198-212.	1.1	29
30	Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Communications, 2022, 4, fcac029.	1.5	29
31	Impact of sleep duration on executive function and brain structure. Communications Biology, 2022, 5, 201.	2.0	29
32	The human hippocampus and its subfield volumes across age, sex and APOE e4 status. Brain Communications, 2021, 3, fcaa219.	1.5	28
33	Dysfunctional effort-based decision-making underlies apathy in genetic cerebral small vessel disease. Brain, 2018, 141, 3193-3210.	3.7	27
34	Attention as foraging for information and value. Frontiers in Human Neuroscience, 2013, 7, 711.	1.0	26
35	Short-term memory for spatial, sequential and duration information. Current Opinion in Behavioral Sciences, 2017, 17, 20-26.	2.0	26
36	Fundamental bound on the persistence and capacity of short-term memory stored as graded persistent activity. ELife, 2017, 6, .	2.8	26

#	Article	IF	CITATIONS
37	Reduced drift rate: a biomarker of impaired information processing in functional movement disorders. Brain, 2020, 143, 674-683.	3.7	25
38	Apathy in small vessel cerebrovascular disease is associated with deficits in effort-based decision making. Brain, 2021, 144, 1247-1262.	3.7	25
39	Dopamine Alters the Fidelity of Working Memory Representations according to Attentional Demands. Journal of Cognitive Neuroscience, 2017, 29, 728-738.	1.1	23
40	The relationship between apathy and impulsivity in large population samples. Scientific Reports, 2021, 11, 4830.	1.6	22
41	Dopamine promotes instrumental motivation, but reduces reward-related vigour. ELife, 2020, 9, .	2.8	22
42	The computational cost of active information sampling before decision-making under uncertainty. Nature Human Behaviour, 2021, 5, 935-946.	6.2	21
43	Mind the gap: temporal discrimination and dystonia. European Journal of Neurology, 2017, 24, 796-806.	1.7	20
44	Dopamine Modulates Option Generation for Behavior. Current Biology, 2018, 28, 1561-1569.e3.	1.8	20
45	An Investigation of Levetiracetam in Alzheimer's Disease (ILiAD): a double-blind, placebo-controlled, randomised crossover proof of concept study. Trials, 2021, 22, 508.	0.7	20
46	Short-term memory advantage for brief durations in human APOE ε4 carriers. Scientific Reports, 2020, 10, 9503.	1.6	18
47	Ignoring versus updating in working memory reveal differential roles of attention and feature binding. Cortex, 2018, 107, 50-63.	1.1	16
48	Precision of working memory for speech sounds. Quarterly Journal of Experimental Psychology, 2015, 68, 2022-2040.	0.6	15
49	Dopamine D2 receptor stimulation modulates the balance between ignoring and updating according to baseline working memory ability. Journal of Psychopharmacology, 2019, 33, 1254-1263.	2.0	15
50	Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain, 2022, 145, 1610-1623.	3.7	15
51	Different patterns of short-term memory deficit in Alzheimer's disease, Parkinson's disease and subjective cognitive impairment. Cortex, 2020, 132, 41-50.	1.1	13
52	Working Memory for Sequences of Temporal Durations Reveals a Volatile Single-Item Store. Frontiers in Psychology, 2016, 7, 1655.	1.1	11
53	Recall cues interfere with retrieval from visuospatial working memory. British Journal of Psychology, 2019, 110, 288-305.	1.2	11
54	An association between prediction errors and risk-seeking: Theory and behavioral evidence. PLoS Computational Biology, 2021, 17, e1009213.	1.5	11

#	Article	IF	CITATIONS
55	Magnetic Oculomotor Prosthetics for Acquired Nystagmus. Ophthalmology, 2017, 124, 1556-1564.	2.5	9
56	A new toolbox to distinguish the sources of spatial memory error. Journal of Vision, 2020, 20, 6.	0.1	9
57	Complementary roles of serotonergic and cholinergic systems in decisions about when to act. Current Biology, 2022, 32, 1150-1162.e7.	1.8	9
58	Mechanisms underlying apathy in Parkinson's disease. Lancet, The, 2015, 385, S71.	6.3	7
59	In-group biases and oculomotor responses: beyond simple approach motivation. Experimental Brain Research, 2018, 236, 1347-1355.	0.7	7
60	Dopamine guides competition for cognitive control: Common effects of haloperidol on working memory and response conflict. Cortex, 2019, 113, 156-168.	1.1	7
61	Vividness of visual imagery questionnaire scores and their relationship to visual short-term memory performance. Cortex, 2022, 146, 186-199.	1.1	7
62	Early management of atrial fibrillation in general surgical in-patients. International Journal of Surgery, 2006, 4, 115-117.	1.1	6
63	Gene therapy for GM1 gangliosidosis: challenges of translational medicine. Annals of Translational Medicine, 2015, 3, S28.	0.7	6
64	Commentary: Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-off: A Direct Electrophysiological Comparison in Behaving Monkeys. Frontiers in Behavioral Neuroscience, 2015, 9, 310.	1.0	5
65	Reward sensitivity and action in Parkinson's disease patients with and without apathy. Brain Communications, 2021, 3, fcab022.	1.5	5
66	A common neural network architecture for visual search and working memory. Visual Cognition, 2020, 28, 356-371.	0.9	4
67	Motivation improves working memory by two processes: Prioritisation and retrieval thresholds. Cognitive Psychology, 2022, 135, 101472.	0.9	4
68	Uncertainty–guided learning with scaled prediction errors in the basal ganglia. PLoS Computational Biology, 2022, 18, e1009816.	1.5	4
69	Reduced decision bias and more rational decision making following ventromedial prefrontal cortex damage. Cortex, 2021, 138, 24-37.	1.1	3
70	Impact of processing demands at encoding, maintenance and retrieval in visual working memory. Cognition, 2021, 214, 104758.	1.1	3
71	Hunger improves reinforcement-driven but not planned action. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 1196-1206.	1.0	3
72	Does Reward Modulate Actions or Bias Attention?. Journal of Neuroscience, 2007, 27, 10919-10921.	1.7	2

#	Article	IF	CITATIONS
73	Adjusting the Aperture of the Mind's Eye: Modulation of the Pupillary Response by the Content of Visual Working Memory. SSRN Electronic Journal, 0, , .	0.4	2
74	Dynamic in-flight shifts of working memory resources across saccades Journal of Experimental Psychology: Human Perception and Performance, 2022, 48, 21-36.	0.7	2
75	DISCRIMINATION IN DYSTONIA: TIME FOR A RETHINK?. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, e4.194-e4.	0.9	1
76	Role of orbitofrontal cortex in reward sensitivity: evidence from human lesions. Lancet, The, 2016, 387, S69.	6.3	1
77	A portable tablet task for assessment of short-term memory. IBRO Reports, 2019, 6, S249.	0.3	1
78	WHY DOES DOPAMINE DEPLETION HAMPER MOVEMENT?. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.133-e4.	0.9	0
79	Myasthenia gravis as a â€~stroke mimic'. Clinical Medicine, 2015, 15, 212.	0.8	0
80	12â€Apathy in neurological disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A6.2-A6.	0.9	0
81	Cortical areas needed for choosing actions based on desires. Brain, 2017, 140, 1539-1542.	3.7	0
82	25â€On being autoimmune in psychiatric places: 10 characteristic mental state features in patients with definite NMDAR-antibody encephalitis. , 2019, , .		0
83	Tremor in Parkinson's disease inverts the effect of dopamine on reinforcement. Brain, 2020, 143, 3178-3180.	3.7	0
84	Dysfunctional Effort-Based Decision Making for Rewards Associated With Apathy in Schizophrenia. Biological Psychiatry, 2021, 89, S216.	0.7	0
85	Binding continuous features in working memory with plastic attractors. Journal of Vision, 2021, 21, 2355.	0.1	0
86	Missed rewards capture attention. Journal of Vision, 2012, 12, 369-369.	0.1	0
87	Neurological Disorders of Attention. , 2014, , .		0
88	Attention for feature-context binding in working memory. Journal of Vision, 2019, 19, 312.	0.1	0
89	Model-based learning retrospectively updates model-free values. Scientific Reports, 2022, 12, 2358.	1.6	0
90	Computational neuroscience: a grand unifying theory?. Brain, 0, , .	3.7	0

#	Article	IF	CITATIONS
91	Nucleus accumbens D1-receptors regulate and focus transitions to reward-seeking action. Neuropsychopharmacology, 2022, 47, 1721-1731.	2.8	0