

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532700/publications.pdf Version: 2024-02-01

Χου Χυ

#	Article	IF	CITATIONS
1	Nickel Nanoparticles Encapsulated in Few‣ayer Nitrogenâ€Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2017, 29, 1605957.	11.1	507
2	Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 2016, 45, 3039-3052.	18.7	499
3	Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chemical Society Reviews, 2014, 43, 2439.	18.7	443
4	Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2013, 49, 6656.	2.2	439
5	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
6	Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chemical Communications, 2013, 49, 9803.	2.2	303
7	Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	4.6	261
8	Ni ₂ P Nanosheets/Ni Foam Composite Electrode for Long-Lived and pH-Tolerable Electrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2015, 7, 2376-2384.	4.0	216
9	Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 2015, 351, 779-793.	3.1	213
10	Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem, 2019, 6, 3214-3226.	1.7	187
11	Hierarchical Nanosheetâ€Based MoS ₂ Nanotubes Fabricated by an Anionâ€Exchange Reaction of MoO ₃ –Amine Hybrid Nanowires. Angewandte Chemie - International Edition, 2013, 52, 8602-8606.	7.2	180
12	Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower‣ike Gold Microstructures. ChemSusChem, 2018, 11, 3480-3485.	3.6	176
13	A spongy nickel-organic CO ₂ reduction photocatalyst for nearly 100% selective CO production. Science Advances, 2017, 3, e1700921.	4.7	175
14	Defectâ€Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12027-12031.	7.2	173
15	Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 1376-1381.	5.2	163
16	Cu ₂ O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis and Shape-Dependent Heterogeneous Organic Catalytic Activities. Journal of Physical Chemistry C, 2011, 115, 15288-15296.	1.5	152
17	Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 591-615.	3.0	151
18	Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. Chemical Engineering Journal, 2016, 299, 23-29.	6.6	140

#	Article	IF	CITATIONS
19	One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. Journal of Materials Chemistry A, 2019, 7, 801-805.	5.2	136
20	Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. Small, 2019, 15, e1804769.	5.2	132
21	Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8662-8668.	5.2	117
22	Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chemical Engineering Journal, 2021, 426, 130759.	6.6	110
23	Synthesis of Hollow Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} Se Nanoframes through the Selective Cation Exchange of Inorganic–Organic Hybrid ZnSe–Amine Nanoflakes with Cadmium Ions. Angewandte Chemie - International Edition, 2012, 51, 3211-3215.	7.2	109
24	Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 2018, 30, e1707582.	11.1	103
25	Ir-Doped Ni-based metal–organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chemical Communications, 2020, 56, 2151-2154.	2.2	101
26	Metal-organic frameworks-derived Ru-doped Co2P/N-doped carbon composite nanosheet arrays as bifunctional electrocatalysts for hydrogen evolution and urea oxidation. Chemical Engineering Journal, 2021, 408, 127308.	6.6	99
27	Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Applied Catalysis B: Environmental, 2021, 298, 120493.	10.8	95
28	Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis. Advanced Materials, 2022, 34, e2110680.	11.1	95
29	Ambient Nitrogen Reduction to Ammonia Electrocatalyzed by Bimetallic PdRu Porous Nanostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 2400-2405.	3.2	94
30	Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chemical Communications, 2014, 50, 13451-13453.	2.2	93
31	Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 306, 121094.	10.8	86
32	Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. Journal of Materials Chemistry A, 2021, 9, 16411-16417.	5.2	82
33	Interface engineering of polyaniline-functionalized porous Pd metallene for alkaline oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121172.	10.8	82
34	Methanol electroreforming coupled to green hydrogen production over bifunctional Nilr-based metal-organic framework nanosheet arrays. Applied Catalysis B: Environmental, 2022, 300, 120753.	10.8	81
35	Electrocatalytic Nitrogen Reduction to Ammonia by Fe ₂ O ₃ Nanorod Array on Carbon Cloth. ACS Sustainable Chemistry and Engineering, 2019, 7, 11754-11759.	3.2	77
36	Facile one-step room-temperature synthesis of Pt ₃ Ni nanoparticle networks with improved electro-catalytic properties. Chemical Communications, 2012, 48, 2665-2667.	2.2	75

#	Article	IF	CITATIONS
37	Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Applied Catalysis B: Environmental, 2022, 310, 121338.	10.8	75
38	Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chemical Communications, 2021, 57, 7525-7528.	2.2	73
39	One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 3642-3648.	5.2	70
40	Fabrication of Mesoporous Cage-Bell Pt Nanoarchitectonics as Efficient Catalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11768-11774.	3.2	69
41	Bimetallic Ag ₃ Cu porous networks for ambient electrolysis of nitrogen to ammonia. Journal of Materials Chemistry A, 2019, 7, 12526-12531.	5.2	67
42	Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis. Nanoscale, 2019, 11, 5499-5505.	2.8	65
43	Hydrophilic/Aerophobic Hydrogen-Evolving Electrode: NiRu-Based Metal–Organic Framework Nanosheets In Situ Grown on Conductive Substrates. ACS Applied Materials & Interfaces, 2020, 12, 34728-34735.	4.0	65
44	Synergism of Interfaces and Defects: Cu/Oxygen Vacancy-Rich Cu-Mn ₃ O ₄ Heterostructured Ultrathin Nanosheet Arrays for Selective Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 44733-44741.	4.0	64
45	Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II). Chemosphere, 2018, 193, 1235-1242.	4.2	63
46	Pt–Ni–P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. Journal of Materials Chemistry A, 2019, 7, 9791-9797.	5.2	63
47	Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a Molecular Nickel Complex. Chemistry - A European Journal, 2015, 21, 4571-4575.	1.7	59
48	Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chemical Communications, 2019, 55, 14745-14748.	2.2	59
49	PtM (M = Co, Ni) Mesoporous Nanotubes as Bifunctional Electrocatalysts for Oxygen Reduction and Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7960-7968.	3.2	58
50	Trimetallic PtPdNi-Truncated Octahedral Nanocages with a Well-Defined Mesoporous Surface for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4252-4257.	4.0	57
51	Enhancing electrochemical ammonia synthesis on palladium nanorods through surface hydrogenation. Chemical Engineering Journal, 2021, 416, 129105.	6.6	57
52	In Situ Reconstruction of Partially Hydroxylated Porous Rh Metallene for Ethylene Glycolâ€Assisted Seawater Splitting. Advanced Functional Materials, 2022, 32, .	7.8	57
53	Ultrathin-nanosheet-based 3D hierarchical porous In ₂ S ₃ microspheres: chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. Journal of Materials Chemistry A, 2015, 3, 1930-1934.	5.2	52
54	Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column. Chemical Engineering Journal, 2018, 338, 261-270.	6.6	51

#	Article	IF	CITATIONS
55	Mesoporous Au ₃ Pd Film on Ni Foam: A Self-Supported Electrocatalyst for Efficient Synthesis of Ammonia. ACS Applied Materials & Interfaces, 2020, 12, 436-442.	4.0	49
56	Three-dimensional Pd–Ag–S porous nanosponges for electrocatalytic nitrogen reduction to ammonia. Nanoscale, 2020, 12, 13507-13512.	2.8	49
57	Photothermally assisted photocatalytic conversion of CO ₂ –H ₂ O into fuels over a WN–WO ₃ Z-scheme heterostructure. Journal of Materials Chemistry A, 2020, 8, 1077-1083.	5.2	48
58	Direct synthesis of superlong Pt Te mesoporous nanotubes for electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 1711-1717.	5.2	46
59	Evolution of hydrogen by few-layered black phosphorus under visible illumination. Journal of Materials Chemistry A, 2017, 5, 24874-24879.	5.2	45
60	In situ coating of a continuous mesoporous bimetallic PtRu film on Ni foam: a nanoarchitectured self-standing all-metal mesoporous electrode. Journal of Materials Chemistry A, 2018, 6, 12744-12750.	5.2	45
61	Trimetallic PdCulr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. Journal of Materials Chemistry A, 2019, 7, 3190-3196.	5.2	45
62	Hierarchical ultrathin-branched CdS nanowire arrays with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 19507-19516.	5.2	44
63	Engineering bunched RhTe nanochains for efficient methanol oxidation electrocatalysis. Chemical Communications, 2020, 56, 13595-13598.	2.2	43
64	Compositionâ€Tunable Pt–Co Alloy Nanoparticle Networks: Facile Roomâ€Temperature Synthesis and Supportless Electrocatalytic Applications. ChemPhysChem, 2012, 13, 2601-2609.	1.0	42
65	Conversion of Sb ₂ Te ₃ Hexagonal Nanoplates into Threeâ€Dimensional Porous Singleâ€Crystalâ€Like Networkâ€6tructured Te Plates Using Oxygen and Tartaric Acid. Angewandte Chemie - International Edition, 2012, 51, 1459-1463.	7.2	42
66	Phosphorus-triggered modification of the electronic structure and surface properties of Pd ₄ S nanowires for robust hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 19873-19878.	5.2	42
67	Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409, 128101.	6.6	42
68	Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: progress and challenges. Catalysis Science and Technology, 2015, 5, 3084-3096.	2.1	40
69	One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance. Chemical Communications, 2012, 48, 3881.	2.2	39
70	Metal–nonmetal nanoarchitectures: quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3910-3916.	5.2	38
71	Metal–Nonmetal One-Dimensional Electrocatalyst: AuPdP Nanowires for Ambient Nitrogen Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 15772-15777.	3.2	37
72	In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts. Chinese Journal of Catalysis, 2021, 42, 1370-1378.	6.9	37

#	Article	IF	CITATIONS
73	Ultrafine ruthenium–iridium–tellurium nanotubes for boosting overall water splitting in acidic media. Journal of Materials Chemistry A, 2022, 10, 2021-2026.	5.2	36
74	Synergism of Interface and Electronic Effects: Bifunctional Nâ€Doped Ni ₃ S ₂ /Nâ€Doped MoS ₂ Heteroâ€Nanowires for Efficient Electrocatalytic Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 16074-16080.	1.7	35
75	Boosting Electrocatalytic Activities of Pt-Based Mesoporous Nanoparticles for Overall Water Splitting by a Facile Ni, P Co-Incorporation Strategy. ACS Sustainable Chemistry and Engineering, 2019, 7, 9709-9716.	3.2	35
76	Enhancing hydrogen evolution activity of triangular PtPdCu nanodarts by phosphorus incorporation. Chemical Engineering Journal, 2020, 399, 125810.	6.6	35
77	Methanol-assisted energy-saving hydrogen production over defect-rich perforated PdIn bimetallene. Chemical Engineering Journal, 2022, 435, 134711.	6.6	35
78	Controlled Synthesis of Long-Wavelength Multicolor-Emitting Carbon Dots for Highly Efficient Tandem Luminescent Solar Concentrators. ACS Applied Energy Materials, 2020, 3, 12230-12237.	2.5	34
79	A mesoporous Au film with surface sulfur modification for efficient ammonia electrosynthesis. Journal of Materials Chemistry A, 2020, 8, 20414-20419.	5.2	34
80	Polyaniline-coated mesoporous Rh films for nonacidic hydrogen evolution reaction. Chemical Engineering Journal, 2022, 428, 132646.	6.6	34
81	Mesoporous RhTe nanowires towards all-pH-value hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2022, 435, 134798.	6.6	34
82	Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 17514-17518.	5.2	33
83	Mesoporous Bimetallic Au@Rh Core–Shell Nanowires as Efficient Electrocatalysts for pH-Universal Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 30479-30485.	4.0	33
84	AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Reports Physical Science, 2022, 3, 100869.	2.8	33
85	Prussian Blueâ€Derived Iron Phosphide Nanoparticles in a Porous Graphene Aerogel as Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 679-685.	1.7	32
86	Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology, 2018, 29, 225403.	1.3	32
87	Defectâ€Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2021, 133, 12134-12138.	1.6	32
88	Facile Construction of IrRh Nanosheet Assemblies As Efficient and Robust Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 15747-15754.	3.2	31
89	Trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities. Nanoscale, 2019, 11, 4781-4787.	2.8	31
90	3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochimica Acta, 2018, 292, 107-114	2.6	30

#	Article	IF	CITATIONS
91	Amorphous Sulfur Decorated Gold Nanowires as Efficient Electrocatalysts toward Ambient Ammonia Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 19969-19974.	3.2	30
92	Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 5595-5600.	5.2	30
93	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	6.9	30
94	Selective C4–F bond cleavage of pentafluorobenzene: synthesis of N-tetrafluoroarylated heterocyclic compounds. Tetrahedron Letters, 2013, 54, 4649-4652.	0.7	29
95	Pt@Mesoporous PtRu Yolk–Shell Nanostructured Electrocatalyst for Methanol Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14867-14873.	3.2	29
96	A quaternary metal–metalloid–nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. Journal of Materials Chemistry A, 2020, 8, 2424-2429.	5.2	29
97	Polyethylenimine-modified bimetallic Au@Rh core–shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13080-13086.	5.2	29
98	Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction. Nanotechnology, 2018, 29, 175403.	1.3	27
99	In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy, 2014, 39, 702-710.	3.8	26
100	PtPdRh Mesoporous Nanospheres: An Efficient Catalyst for Methanol Electro-Oxidation. Langmuir, 2019, 35, 413-419.	1.6	26
101	Self-template synthesis of CdS/NiS _x heterostructured nanohybrids for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2017, 46, 10650-10656.	1.6	25
102	Crystalline core–amorphous shell heterostructures: epitaxial assembly of NiB nanosheets onto PtPd mesoporous hollow nanopolyhedra for enhanced hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8927-8933.	5.2	25
103	Rational construction of Au ₃ Cu@Cu nanocages with porous core–shell heterostructured walls for enhanced electrocatalytic N ₂ fixation. Journal of Materials Chemistry A, 2021, 9, 8372-8377.	5.2	25
104	Enhanced Dual Fuel Cell Electrocatalysis with Trimetallic PtPdCo Mesoporous Nanoparticles. Chemistry - an Asian Journal, 2018, 13, 2939-2946.	1.7	24
105	One-step synthesis of self-standing porous palladium-ruthenium nanosheet array on Ni foam for ambient electrosynthesis of ammonia. International Journal of Hydrogen Energy, 2020, 45, 5997-6005.	3.8	24
106	Construction of hierarchical IrTe nanotubes with assembled nanosheets for overall water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 18576-18581.	5.2	24
107	Two-Dimensional Heterojunction Electrocatalyst: Au-Bi ₂ Te ₃ Nanosheets for Electrochemical Ammonia Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 47458-47464.	4.0	24
108	Phosphorus incorporation accelerates ammonia electrosynthesis over a mesoporous Au film. Chemical Communications, 2022, 58, 6088-6091.	2.2	24

#	Article	IF	CITATIONS
109	Conversion of CuO Nanoplates into Porous Hybrid Cu ₂ O/Polypyrrole Nanoflakes through a Pyrroleâ€Induced Reductive Transformation Reaction. Chemistry - an Asian Journal, 2013, 8, 1120-1127.	1.7	23
110	Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2021, 426, 131227.	6.6	23
111	Boronâ€Intercalationâ€Induced Phase Evolution of Rh Metallene for Energyâ€Saving H ₂ Production by H ₂ O ₂ Oxidation Coupled with Water Electrolysis. Small, 2022, 18, .	5.2	23
112	Tri-metallic PtPdAu mesoporous nanoelectrocatalysts. Nanotechnology, 2018, 29, 255404.	1.3	22
113	One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. Nanoscale, 2018, 10, 16087-16093.	2.8	22
114	B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale, 2020, 12, 19159-19164.	2.8	21
115	Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 14863-14869.	2.8	21
116	Flexible synthesis of Au@Pd core–shell mesoporous nanoflowers for efficient methanol oxidation. Nanoscale, 2021, 13, 3208-3213.	2.8	21
117	Anodic hydrazine oxidation assisted hydrogen evolution over bimetallic RhIr mesoporous nanospheres. Journal of Materials Chemistry A, 2021, 9, 18323-18328.	5.2	21
118	Amorphization activated RhPb nanflowers for energy-saving hydrogen production by hydrazine-assisted water electrolysis. Chemical Engineering Journal, 2022, 440, 135848.	6.6	21
119	Integrated Mesoporous PtPd Film/Ni Foam: An Efficient Binder-Free Cathode for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12367-12374.	3.2	20
120	Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chemical Engineering Journal, 2021, 421, 127751.	6.6	20
121	Phosphorus-modified ruthenium–tellurium dendritic nanotubes outperform platinum for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5026-5032.	5.2	20
122	Facile preparation of Pt-based cage-bell structured nanoarchitectures for enhanced methanol oxidation electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 2478-2485.	3.8	19
123	Mesoporous Rh nanotubes for efficient electro-oxidation of methanol. Journal of Materials Chemistry A, 2021, 9, 4744-4750.	5.2	19
124	Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis. Chemical Engineering Journal, 2021, 418, 129493.	6.6	19
125	N-doping induced lattice-strained porous PdIr bimetallene for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 8364-8370.	5.2	19
126	Trimetallic Au@PdPt porous core-shell structured nanowires for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 428, 131070.	6.6	17

#	Article	IF	CITATIONS
127	Liquid Metal Interfacial Growth and Exfoliation to Form Mesoporous Metallic Nanosheets for Alkaline Methanol Electroreforming. ACS Nano, 2022, 16, 2978-2987.	7.3	17
128	Spatially-controlled NiCo ₂ O ₄ @MnO ₂ core–shell nanoarray with hollow NiCo ₂ O ₄ cores and MnO ₂ flake shells: an efficient catalyst for oxygen evolution reaction. Nanotechnology, 2018, 29, 285401.	1.3	16
129	Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Selfâ€Sacrificial Template. Chemistry - A European Journal, 2019, 25, 5316-5321.	1.7	16
130	Effects of AuCuB Catalysts with Porous Nanostructures on Electrosynthesis of Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 12588-12594.	3.2	16
131	Twoâ€Ðimensional Nilr@Nâ€Ðoped Carbon Nanocomposites Supported on Ni Foam for Electrocatalytic Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 14496-14501.	1.7	16
132	Engineering One-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS Applied Materials & Interfaces, 2021, 13, 20233-20239.	4.0	16
133	Defect-rich ultrathin AuPd nanowires with Boerdijk–Coxeter structure for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 435, 134823.	6.6	16
134	Electroreduction of Nitrate to Ammonia on Palladium–Cobalt–Oxygen Nanowire Arrays. ACS Applied Materials & Interfaces, 2022, 14, 13169-13176.	4.0	16
135	Enhanced Oxygen Reduction and Methanol Oxidation Electrocatalysis over Bifunctional PtPdIr Mesoporous Hollow Nanospheres. Chemistry - an Asian Journal, 2019, 14, 3868-3874.	1.7	15
136	<i>In situ</i> electrochemical reduction-assisted exfoliation: conversion of BiOCl nanoplates into Bi nanosheets enables efficient electrocatalytic nitrogen fixation. Sustainable Energy and Fuels, 2020, 4, 3334-3339.	2.5	15
137	Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy and Environment, 2018, 3, 352-359.	4.7	14
138	A water-soluble glucose-functionalized cobalt(<scp>iii</scp>) complex as an efficient electrocatalyst for hydrogen evolution under neutral conditions. Dalton Transactions, 2015, 44, 1526-1529.	1.6	13
139	Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chemical Engineering Journal, 2022, 450, 137995.	6.6	13
140	Boronâ€Doped PdCuAu Nanospine Assembly as an Efficient Electrocatalyst toward Formic Acid Oxidation. Chemistry - A European Journal, 2020, 26, 2493-2498.	1.7	12
141	Anchoring Au nanoparticles on Bi ultrathin nanosheets for use as an efficient heterogeneous catalyst for ambient-condition electrochemical ammonia synthesis. Sustainable Energy and Fuels, 2020, 4, 4516-4521.	2.5	12
142	Diethylenetriamine-assisted hydrothermal synthesis of dodecahedral α-Fe ₂ O ₃ nanocrystals with enhanced and stable photoelectrochemical activity. CrystEngComm, 2015, 17, 27-31.	1.3	11
143	PdNi/Ni Nanotubes Assembled by Mesoporous Nanoparticles for Efficient Alkaline Ethanol Oxidation Reaction. Chemistry - A European Journal, 2021, 27, 14472-14477.	1.7	11
144	PdRh bimetallene for energy-saving hydrogen production via methanol electroreforming. Applied Materials Today, 2022, 26, 101400.	2.3	11

#	Article	IF	CITATIONS
145	Conductive FeSe nanorods: A novel and efficientco-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light. Journal of Environmental Chemical Engineering, 2017, 5, 4206-4211.	3.3	10
146	Palladium Nanothorn Assembly Array for Efficient Electroreduction of Nitrogen to Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 14228-14233.	3.2	10
147	Tannic acid decorated AuPd lavender-like nanochains for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 15678-15683.	5.2	10
148	Regulation of the surface micro-structure and crystal phase of Pd ₂ B mesoporous nanoparticles for enhanced hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 21123-21131.	5.2	10
149	A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. Journal of Materials Chemistry A, 2022, 10, 3086-3092.	5.2	10
150	Hollow PtPd Nanorods with Mesoporous Shells as an Efficient Electrocatalyst for the Methanolâ€Oxidation Reaction. Chemistry - an Asian Journal, 2019, 14, 3019-3024.	1.7	9
151	Pore-Size-Tuned Pd Films Grown on Ni Foam as an Advanced Catalyst for Electrosynthesis of Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 11827-11833.	3.2	9
152	A P-doped PtTe mesoporous nanotube electrocatalyst. Sustainable Energy and Fuels, 2020, 4, 2950-2955.	2.5	9
153	Interstitial boron-doped nanoporous palladium film for electro-reduction of nitrogen to ammonia. Chemical Engineering Journal, 2022, 449, 137771.	6.6	9
154	Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. Nanoscale Advances, 2020, 2, 1084-1089.	2.2	8
155	ZIF-derived porous carbon composites coated on NiCo ₂ S ₄ nanotubes array toward efficient water splitting. Nanotechnology, 2020, 31, 195402.	1.3	8
156	Three-dimensional PdAuRu nanospines assemblies for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 438, 135539.	6.6	8
157	Direct fabrication of bimetallic AuPt nanobrick spherical nanoarchitectonics for the oxygen reduction reaction. New Journal of Chemistry, 2019, 43, 9628-9633.	1.4	7
158	Bimetallic IrAu mesoporous nanovesicles. Chemical Engineering Journal, 2020, 395, 125135.	6.6	7
159	Bimetallic mesoporous RhRu film for electrocatalytic nitrogen reduction to ammonia. Inorganic Chemistry Frontiers, 2021, 8, 4276-4281.	3.0	7
160	Synergistic coupling of P-doped Pd4S nanoparticles with P/S-co-doped reduced graphene oxide for enhanced alkaline oxygen reduction. Chemical Engineering Journal, 2022, 429, 132194.	6.6	7
161	Phosphorus-triggered activation of PdPb nanoflowers for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 15528-15534.	5.2	7
162	Multinary PtPdNiP truncated octahedral mesoporous nanocages for enhanced methanol oxidation electrocatalysis. New Journal of Chemistry, 2020, 44, 15492-15497.	1.4	6

#	Article	IF	CITATIONS
163	Phosphorus modulation of a mesoporous rhodium film for enhanced nitrogen electroreduction. Nanoscale, 2021, 13, 13809-13815.	2.8	6
164	Ternary AuPS Alloy Mesoporous Film for Efficient Electroreduction of Nitrogen to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 28057-28063.	4.0	6
165	Interface functionalization of mesoporous ruthenium films with polyaniline for enhanced hydrogen evolution electrocatalysis at all pH values. Journal of Materials Chemistry A, 2022, 10, 14435-14440.	5.2	6
166	Mesoporous Co ₃ O ₄ Nanobundle Electrocatalysts. Chemistry - an Asian Journal, 2018, 13, 2093-2100.	1.7	5
167	Integration mesoporous surface and hollow cavity into PtPdRh nano-octahedra for enhanced oxygen reduction electrocatalysis. Nanotechnology, 2020, 31, 025401.	1.3	5
168	Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis. Journal of Electroanalytical Chemistry, 2022, 904, 115874.	1.9	5
169	All-metallic nanorattles consisting of a Pt core and a mesoporous PtPd shell for enhanced electrocatalysis. Nanotechnology, 2019, 30, 475602.	1.3	4
170	A Mesoporous Nanorattle‣tructured Pd@PtRu Electrocatalyst. Chemistry - an Asian Journal, 2019, 14, 3397-3403.	1.7	4
171	Facile dual tuning of PtPdP nanoparticles by metal–nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis. Nanotechnology, 2020, 31, 045401.	1.3	4
172	P-modified hollow carbon mesoporous nanospheres decorated with ultrafine OsP alloy nanoparticles for nonacidic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13042-13047.	5.2	4
173	Ultrathin Porous WPdH Nanosheet Assemblies for Efficient Alkaline Oxygen Reduction. Energy & Fuels, 2022, 36, 7775-7781.	2.5	4
174	Room-temperature Fast Synthesis of Composition-adjustable Pt–Pd Alloy Sub-10-nm Nanoparticle Networks with Improved Electrocatalytic Activities. Chemistry Letters, 2012, 41, 546-548.	0.7	3
175	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	6.9	3
176	Tannic acid modified PdAu alloy nanowires as efficient oxygen reduction electrocatalysts. Nanotechnology, 2022, 33, 375401.	1.3	3
177	An interconnected porous Au ₃ Pt film on Ni foam: an efficient electrocatalyst for alkaline hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 4878-4883.	2.5	2
178	Mesoporous PdRu Nanocrystals for Oxygen Reduction Electrocatalysis. Energy & Fuels, 2021, 35, 13382-13388.	2.5	2
179	Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. Nanotechnology, 2022, 33, 325401.	1.3	2
180	Interface engineering of Ni5P2 nanoparticles and a mesoporous PtRu film heterostructure on Ni foam for enhanced hydrogen evolution. Nanotechnology, 2019, 30, 485403.	1.3	1

#	Article	IF	CITATIONS
181	Rational synthesis of Pt-based dandelion-like yolk–shell nanoparticles with enhanced oxygen reduction properties. Sustainable Energy and Fuels, 2019, 3, 3329-3334.	2.5	1
182	Porous PdAg alloy nanostructures with a concave surface for efficient electrocatalytic methanol oxidation. Nanotechnology, 2021, 32, 355402.	1.3	1
183	Electroreduction of nitrogen to ammonia over bimetallic mesoporous RuAu film. Materials Today Energy, 2022, 23, 100920.	2.5	1
184	Intensifying sustainable solar water production by steam heat internal circulation. Materials Advances, 2021, 2, 1731-1738.	2.6	0