
Olivier Guillaume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532658/publications.pdf Version: 2024-02-01

OLIVIER CHILLAUME

#	Article	IF	CITATIONS
1	Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017, 54, 386-398.	4.1	151
2	Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomaterialia, 2018, 79, 265-275.	4.1	134
3	Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomaterialia, 2016, 46, 112-128.	4.1	128
4	Multilayer, degradable coating as a carrier for the sustained release of antibiotics: Preparation and antimicrobial efficacy in vitro. Journal of Controlled Release, 2012, 162, 492-501.	4.8	91
5	Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. Journal of Controlled Release, 2018, 269, 88-99.	4.8	74
6	Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution?. Biomaterials, 2018, 167, 15-31.	5.7	61
7	Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: Effect of TGF-β3 supplementation and oxygen culture conditions. Acta Biomaterialia, 2014, 10, 1985-1995.	4.1	60
8	New antibiotic-eluting mesh used for soft tissue reinforcement. Acta Biomaterialia, 2011, 7, 3390-3397.	4.1	55
9	3D Printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly(trimethylene-carbonate) using two-photon-polymerization. Biofabrication, 2020, 12, 045036.	3.7	55
10	Enhancing cell migration in shape-memory alginate–collagen composite scaffolds: InÂvitro and ex vivo assessment for intervertebral disc repair. Journal of Biomaterials Applications, 2015, 29, 1230-1246.	1.2	45
11	Orbital floor repair using patient specific osteoinductive implant made by stereolithography. Biomaterials, 2020, 233, 119721.	5.7	39
12	Emerging Trends in Abdominal Wall Reinforcement: Bringing Bioâ€Functionality to Meshes. Advanced Healthcare Materials, 2015, 4, 1763-1789.	3.9	36
13	Poly(trimethylene carbonate) and nanoâ€hydroxyapatite porous scaffolds manufactured by stereolithography. Polymers for Advanced Technologies, 2017, 28, 1219-1225.	1.6	32
14	Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Materials Today, 2021, 44, 25-39.	8.3	28
15	A Hyaluronic Acid Hydrogel Loaded with Gentamicin and Vancomycin Successfully Eradicates Chronic Methicillin-Resistant Staphylococcus aureus Orthopedic Infection in a Sheep Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	27
16	New magnetic-resonance-imaging-visible poly(ε-caprolactone)-based polyester for biomedical applications. Acta Biomaterialia, 2012, 8, 1339-1347.	4.1	26
17	Potential of a PLA–PEO–PLA-Based Scaffold for Skin Tissue Engineering: <i>In Vitro</i> Evaluation. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1687-1700.	1.9	25
18	Photoprintable Gelatin- <i>graft</i> -Poly(trimethylene carbonate) by Stereolithography for Tissue Engineering Applications. Biomacromolecules, 2021, 22, 3873-3883.	2.6	24

OLIVIER GUILLAUME

#	Article	IF	CITATIONS
19	Synergistic anti-fouling and bactericidal poly(ether ether ketone) surfaces via a one-step photomodification. Materials Science and Engineering C, 2020, 111, 110811.	3.8	23
20	Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections. Journal of Orthopaedic Translation, 2020, 21, 136-145.	1.9	19
21	Poly(Aspartic Acid) Functionalized Poly(ϵ-Caprolactone) Microspheres with Enhanced Hydroxyapatite Affinity as Bone Targeting Antibiotic Carriers. Pharmaceutics, 2020, 12, 885.	2.0	17
22	Thermo-Responsive Antimicrobial Hydrogel for the In-Situ Coating of Mesh Materials for Hernia Repair. Polymers, 2020, 12, 1245.	2.0	16
23	Microâ€porous composite scaffolds of photoâ€crosslinked poly(trimethylene carbonate) and nanoâ€hydroxyapatite prepared by lowâ€temperature extrusionâ€based additive manufacturing. Polymers for Advanced Technologies, 2017, 28, 1226-1232.	1.6	15
24	Permanent Polymer Coating for in vivo MRI Visualization of Tissue Reinforcement Prostheses. Macromolecular Bioscience, 2012, 12, 1364-1374.	2.1	13
25	Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2020, 24, 1201-1210.	0.9	13
26	Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Acta Biomaterialia, 2023, 165, 72-85.	4.1	13
27	A critical review of the in vitro and in vivo models for the evaluation of anti-infective meshes. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2018, 22, 961-974.	0.9	11
28	Interaction of gentamicin sulfate with alginate and consequences on the physico-chemical properties of alginate-containing biofilms. International Journal of Biological Macromolecules, 2019, 121, 390-397.	3.6	11
29	Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair. Journal of Materials Science: Materials in Medicine, 2016, 27, 37.	1.7	10
30	A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. International Journal of Nanomedicine, 2018, Volume 13, 5701-5718.	3.3	10
31	Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. European Polymer Journal, 2021, 147, 110335.	2.6	10
32	Polyoxazoline hydrogels fabricated by stereolithography. Biomaterials Science, 2022, 10, 2681-2691.	2.6	7
33	Tolerance and Long-Term MRI Imaging of Gadolinium-Modified Meshes Used in Soft Organ Repair. PLoS ONE, 2015, 10, e0120218.	1.1	6
34	Stromal vascular fraction cells as biologic coating of mesh for hernia repair. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2020, 24, 1233-1243.	0.9	5
35	Introduction of the Anspach drill as a novel surgical driller for creating calvarial defects in animal models. Journal of Orthopaedic Research, 2019, 37, 1183-1191.	1.2	4
36	Conception d'un treillis anti-infectieux et visible en IRM pour la prise en charge chirurgicale des prolapsus génitaux et des hernies abdominales. Irbm, 2012, 33, 78-85.	3.7	3