
Motonori Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. PLoS ONE, 2021, 16, e0257705.	1.1	15
2	Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. Journal of Virology, 2020, 94, .	1.5	9
3	Potential antiâ€SARSâ€CoVâ€2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease. FEBS Open Bio, 2020, 10, 995-1004.	1.0	49
4	Menaquinone-4 Accelerates Calcification of Human Aortic Valve Interstitial Cells in High-Phosphate Medium through PXR. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 277-284.	1.3	10
5	Inhibition of Acetylcholinesterase by Wood Creosote and Simple Phenolic Compounds. Chemical and Pharmaceutical Bulletin, 2020, 68, 1193-1200.	0.6	3
6	Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists. Journal of Computer-Aided Molecular Design, 2017, 31, 577-585.	1.3	1
7	Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics. FEBS Open Bio, 2017, 7, 391-396.	1.0	6
8	Geometrical Dependence of the Highest Occupied Molecular Orbital in Bicyclic Systems: Ï€â€Facial Stereoselectivity of Bicyclic and Tricyclic Olefins. Asian Journal of Organic Chemistry, 2015, 4, 659-673.	1.3	0
9	Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. Journal of Computer-Aided Molecular Design, 2015, 29, 975-988.	1.3	16
10	A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain. Journal of Molecular Graphics and Modelling, 2015, 62, 262-275.	1.3	4
11	Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. Journal of Structural Biology, 2014, 185, 355-365.	1.3	11
12	Most Stable Conformation of the Cyclopropane Ring Attached at a Carbon Atom in a 1,2-Dicarba-closo-dodecaborane(12) System. Journal of Organic Chemistry, 2004, 69, 4063-4074.	1.7	18
13	On Attempts at Generation of Carboranyl Carbocation. Journal of Organic Chemistry, 2003, 68, 9589-9597.	1.7	40
14	Modulators of Tumor Necrosis Factor .ALPHA. Production Bearing Dicarba-closo-dodecaborane as a Hydrophobic Pharmacophore Biological and Pharmaceutical Bulletin, 2000, 23, 513-516.	0.6	37
15	Retinoid X Receptor-Antagonistic Diazepinylbenzoic Acids Chemical and Pharmaceutical Bulletin, 1999, 47, 1778-1786.	0.6	80
16	Functionalization of Polymethylcarboranes. Preparation and Reactivity of 2,3,4,5,6,7,8,9,10,11-Decamethyl-1,12-dicarba-closo-dodecaborane(12)-1-carboxylic Acid Chemical and Pharmaceutical Bulletin, 1999, 47, 699-701.	0.6	10
17	Dicarba-closo-dodecaboranes as a Pharmacophore. Retinoidal Antagonists and Potential Agonists Chemical and Pharmaceutical Bulletin, 1999, 47, 398-404.	0.6	61
18	Facial selectivities of benzofluorenes bearing a carbonyl, an olefin, or a diene group in spiro geometry. π Spiro substituent effects. Tetrahedron Letters, 1998, 39, 403-406.	0.7	12

Motonori Tsuji

#	Article	IF	CITATIONS
19	Potent Retinoid Synergists with a Diphenylamine Skeleton Biological and Pharmaceutical Bulletin, 1998, 21, 544-546.	0.6	23
20	Polyenylidene Thiazolidine Derivatives with Retinoidal Activities Chemical and Pharmaceutical Bulletin, 1997, 45, 1805-1813.	0.6	22
21	A Cyclopropyl Group Shows Reverse Facial Selectivity Depending on the Bicyclic Ring System. Tetrahedron Letters, 1997, 38, 6693-6696.	0.7	10
22	Orbital Unsymmetrization of Olefins Arising from Non-equivalent Orbital InteractionsSIGMAPl. Coupling in Bicyclo(2.2.2)octenes Chemical and Pharmaceutical Bulletin, 1996, 44, 296-306.	0.6	14
23	A remote substituent can determine magnitude of facial selectivity in benzobicyclo[2.2.2]octatrienes. Tetrahedron Letters, 1996, 37, 2609-2612.	0.7	8
24	Root Growth-promoting Activities of <i>N</i> -Acyl-L-proline Derivatives. Bioscience, Biotechnology and Biochemistry, 1992, 56, 778-782.	0.6	3