
Chandra S Verma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stapled Peptides with Improved Potency and Specificity That Activate p53. ACS Chemical Biology, 2013, 8, 506-512.	1.6	193
2	Computational Methods and Tools in Antimicrobial Peptide Research. Journal of Chemical Information and Modeling, 2021, 61, 3172-3196.	2.5	51
3	Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. Journal of Medicinal Chemistry, 2018, 61, 4348-4369.	2.9	37
4	Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4366-4377.	2.0	34
5	Macrocyclization of an all- <scp>d</scp> linear α-helical peptide imparts cellular permeability. Chemical Science, 2020, 11, 5577-5591.	3.7	33
6	Extending the Martini Coarse-Grained Force Field to <i>N</i> -Glycans. Journal of Chemical Information and Modeling, 2020, 60, 3864-3883.	2.5	30
7	Efficient development of stable and highly functionalised peptides targeting the CK2α/CK2β protein–protein interaction. Chemical Science, 2019, 10, 5056-5063.	3.7	27
8	Discovery of cell active macrocyclic peptides with on-target inhibition of KRAS signaling. Chemical Science, 2021, 12, 15975-15987.	3.7	26
9	Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathogens, 2019, 15, e1007996.	2.1	25
10	C-Terminal Substitution of MDM2 Interacting Peptides Modulates Binding Affinity by Distinctive Mechanisms. PLoS ONE, 2011, 6, e24122.	1.1	24
11	Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chemical Communications, 2019, 55, 7914-7917.	2.2	23
12	Structural insights reveal a recognition feature for tailoring hydrocarbon stapled-peptides against the eukaryotic translation initiation factor 4E protein. Chemical Science, 2019, 10, 2489-2500.	3.7	21
13	Stereoisomerism of stapled peptide inhibitors of the p53-Mdm2 interaction: an assessment of synthetic strategies and activity profiles. Chemical Science, 2019, 10, 6457-6466.	3.7	21
14	De-risking Drug Discovery of Intracellular Targeting Peptides: Screening Strategies to Eliminate False-Positive Hits. ACS Medicinal Chemistry Letters, 2020, 11, 1993-2001.	1.3	21
15	Liquid–Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology. Journal of Physical Chemistry B, 2021, 125, 6776-6790.	1.2	21
16	Stabilizing the eIF4G1 α-Helix Increases Its Binding Affinity with eIF4E: Implications for Peptidomimetic Design Strategies. Journal of Molecular Biology, 2011, 405, 736-753.	2.0	20
17	Update on the Development of MNK Inhibitors as Therapeutic Agents. Journal of Medicinal Chemistry, 2022, 65, 983-1007.	2.9	20
18	Discovering Putative Protein Targets of Small Molecules: A Study of the p53 Activator Nutlin. Journal of Chemical Information and Modeling, 2019, 59, 1529-1546.	2.5	15

CHANDRA S VERMA

#	Article	IF	CITATIONS
19	Deciphering the mechanistic effects of eIF4E phosphorylation on mRNA ap recognition. Protein Science, 2020, 29, 1373-1386.	3.1	15
20	Disorder–Order Interplay of a Barnacle Cement Protein Triggered by Interactions with Calcium and Carbonate Ions: A Molecular Dynamics Study. Chemistry of Materials, 2020, 32, 8845-8859.	3.2	15
21	Straightforward Incorporation of Multiple Ligand Types into Molecular Dynamics Simulations for Efficient Binding Site Detection and Characterization. Journal of Chemical Theory and Computation, 2020, 16, 6633-6644.	2.3	11
22	Molecular Insights into the Membrane Affinities of Model Hydrophobes. ACS Omega, 2018, 3, 2498-2507.	1.6	10
23	Critical Role for Cold Shock Protein YB-1 in Cytokinesis. Cancers, 2020, 12, 2473.	1.7	10
24	A chemical biology approach reveals a dependency of glioblastoma on biotin distribution. Science Advances, 2021, 7, eabf6033.	4.7	10
25	Conformational Transitions of Melittin between Aqueous and Lipid Phases: Comparison of Simulations with Experiments. Journal of Physical Chemistry B, 2018, 122, 8698-8705.	1.2	9
26	A Funneled Conformational Landscape Governs Flavivirus Fusion Peptide Interaction with Lipid Membranes. Journal of Chemical Theory and Computation, 2018, 14, 3920-3932.	2.3	9
27	Inhibiting S100B(ββ) for Activating Wild-Type p53: Design of Stapled Peptides. ACS Omega, 2019, 4, 5335-5344	. 1.6	9
28	Dissecting the Molecular Mechanism of Colistin Resistance in <i>mcr</i> -1 Bacteria. Journal of Chemical Information and Modeling, 2020, 60, 4975-4984.	2.5	9
29	A Novel Determinant of PSMD9 PDZ Binding Guides the Evolution of the First Generation of Super Binding Peptides. Biochemistry, 2019, 58, 3422-3433.	1.2	8
30	Exploring Gatekeeper Mutations in <i>EGFR</i> through Computer Simulations. Journal of Chemical Information and Modeling, 2019, 59, 2850-2858.	2.5	8
31	Comparison of Charge Derivation Methods Applied to Amino Acid Parameterization. ACS Omega, 2018, 3, 4664-4673.	1.6	7
32	How well does molecular simulation reproduce environment-specific conformations of the intrinsically disordered peptides PLP, TP2 and ONEG?. Chemical Science, 2022, 13, 1957-1971.	3.7	7
33	Computational Design of Macrocyclic Binders of S100B(ββ): Novel Peptide Theranostics. Molecules, 2021, 26, 721.	1.7	5
34	Characterization of Hydration Properties in Structural Ensembles of Biomolecules. Journal of Chemical Information and Modeling, 2019, 59, 3316-3329.	2.5	4
35	Effects of Single Nucleotide Polymorphisms on the Binding of Afatinib to EGFR: A Potential Patient Stratification Factor Revealed by Modeling Studies. Journal of Chemical Information and Modeling, 2019, 59, 309-315.	2.5	4
36	Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by <scp>CK1δ</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 2009-2022.	1.5	3

CHANDRA S VERMA

#	Article	IF	CITATIONS
37	Molecular modeling and interaction between Arabidopsis sulfite oxidase and the GW motif of Turnip crinkle virus coat protein. Virology, 2020, 551, 64-74.	1.1	2
38	Can Glycosylation Mask the Detection of MHC Expressing p53 Peptides by T Cell Receptors?. Biomolecules, 2021, 11, 1056.	1.8	1
39	DStabilize: A Web Resource to Generate Mirror Images of Biomolecules. Structure, 2020, 28, 1358-1360.e2.	1.6	1
40	Development of a novel peptide aptamer that interacts with the eIF4E capped-mRNA binding site using peptide epitope linker evolution (PELE). RSC Chemical Biology, 2022, 3, 916-930.	2.0	1
41	Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides. Journal of Chemical Physics, 2022, 156, 065101.	1.2	0
42	Activating the p53 anti-cancer pathway by targeting the MDM2/MDMX dimer interface with short peptide segments: a computational peptide design experiment. Molecular Systems Design and Engineering, 0, , .	1.7	0