Lesley Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753099/publications.pdf

Version: 2024-02-01

535685 340414 2,589 42 17 39 citations h-index g-index papers 48 48 48 4090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study. Lancet Infectious Diseases, The, 2022, 22, 242-249.	4.6	47
2	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603, 679-686.	13.7	1,210
3	Implementation of an mHealth App to Promote Engagement During HIV Care and Viral Load Suppression in Johannesburg, South Africa (iThemba Life): Pilot Technical Feasibility and Acceptability Study. JMIR Formative Research, 2022, 6, e26033.	0.7	10
4	Monitored Implementation of COVID-19 Rapid Antigen Screening at Taxi Ranks in Johannesburg, South Africa. Diagnostics, 2022, 12, 402.	1.3	2
5	Challenges and complexities in evaluating severe acute respiratory syndrome coronavirus 2 molecular diagnostics during the COVID-19 pandemic. African Journal of Laboratory Medicine, 2022, 11, 1429.	0.2	3
6	Antigen-Based Point of Care Testing (POCT) for Diagnosing SARS-CoV-2: Assessing Performance. Methods in Molecular Biology, 2022, 2452, 45-62.	0.4	1
7	The Development of a Standardized Quality Assessment Material to Support Xpert® HIV-1 Viral Load Testing for ART Monitoring in South Africa. Diagnostics, 2021, 11, 160.	1.3	O
8	Comparative Analytical Evaluation of Four Centralized Platforms for the Detection of Mycobacterium tuberculosis Complex and Resistance to Rifampicin and Isoniazid. Journal of Clinical Microbiology, 2021, 59, .	1.8	13
9	SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. Frontiers in Plant Science, 2021, 12, 589940.	1.7	31
10	Validation of Roche immunoassay for severe acute respiratory coronavirus 2 in South Africa. Southern African Journal of Infectious Diseases, 2021, 36, .	0.3	2
11	Operational characteristics of 30 lateral flow immunoassays used to identify COVID-19 immune response. Journal of Immunological Methods, 2021, 496, 113096.	0.6	13
12	Diagnostic performance of the Abbott RealTime MTB assay for tuberculosis diagnosis in people living with HIV. Scientific Reports, 2021, 11, 19271.	1.6	0
13	Self-Sampling for SARS-CoV-2 Diagnostic Testing by Using Nasal and Saliva Specimens: Protocol for Usability and Clinical Evaluation. JMIR Research Protocols, 2021, 10, e24811.	0.5	7
14	Track Omicron's spread with molecular data. Science, 2021, 374, 1454-1455.	6.0	103
15	Cost and Impact of Dried Blood Spot Versus Plasma Separation Card for Scale-up of Viral Load Testing in Resource-limited Settings. Clinical Infectious Diseases, 2020, 70, 1014-1020.	2.9	23
16	<p>The Performance of the Abbott Real Time MTB RIF/INH Compared to the MTBDRplus V2 for the Identification of MDR-TB Among Isolates</p> . Infection and Drug Resistance, 2020, Volume 13, 3301-3308.	1.1	3
17	Performance of the Roche cobas MTB Assay for the Molecular Diagnosis of Pulmonary Tuberculosis in a High HIV Burden Setting. Journal of Molecular Diagnostics, 2020, 22, 1225-1237.	1.2	8
18	Accurate HIV viral load measurement in primary health care settings using the cobas $\hat{A}^{\text{@}}$ plasma separation card. PLoS ONE, 2020, 15, e0232122.	1.1	7

#	Article	IF	Citations
19	Continuous quality monitoring in the field: an evaluation of the performance of the Fio Deki Readerâ,,¢ for rapid HIV testing in South Africa. BMC Infectious Diseases, 2020, 20, 320.	1.3	4
20	A Clinical Prediction Score Including Trial of Antibiotics and C-Reactive Protein to Improve the Diagnosis of Tuberculosis in Ambulatory People With HIV. Open Forum Infectious Diseases, 2020, 7, ofz543.	0.4	10
21	Discordances between molecular assays for rifampicin resistance in <i>Mycobacterium tuberculosis</i> : frequency, mechanisms and clinical impact. Journal of Antimicrobial Chemotherapy, 2020, 75, 1123-1129.	1.3	9
22	Guidance for Studies Evaluating the Accuracy of Sputum-Based Tests to Diagnose Tuberculosis. Journal of Infectious Diseases, 2019, 220, S99-S107.	1.9	19
23	Performance of Cepheid Xpert HIV-1 viral load plasma assay to accurately detect treatment failure. Aids, 2019, 33, 1881-1889.	1.0	14
24	Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infectious Diseases, The, 2018, 18, 76-84.	4.6	474
25	Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTi <i>m</i> e MTB for Diagnosis of Pulmonary Tuberculosis in a High-HIV-Burden Setting. Journal of Clinical Microbiology, 2018, 56, .	1.8	49
26	Molecular Detection of Mycobacterium tuberculosis from Stools in Young Children by Use of a Novel Centrifugation-Free Processing Method. Journal of Clinical Microbiology, 2018, 56, .	1.8	23
27	Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control. Microbiology Spectrum, 2017, 5,	1.2	42
28	Diagnosis of opportunistic infections. Current Opinion in HIV and AIDS, 2017, 12, 129-138.	1.5	31
29	Performance of the Abbott RealTi <i>m</i> e MTB and MTB RIF/INH Assays in a Setting of High Tuberculosis and HIV Coinfection in South Africa. Journal of Clinical Microbiology, 2017, 55, 2491-2501.	1.8	29
30	Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control. , 2017, , 389-410.		1
31	HIV-1 viraemia and drug resistance amongst female sex workers in Soweto, South Africa: A cross sectional study. PLoS ONE, 2017, 12, e0188606.	1.1	20
32	Molecular characterisation of rifampicin-resistant <i>Mycobacterium tuberculosis</i> strains from Malawi. African Journal of Laboratory Medicine, 2017, 6, 463.	0.2	15
33	Performance of Xpert® MTB/RIF among tuberculosis outpatients in Lilongwe, Malawi. African Journal of Laboratory Medicine, 2017, 6, 464.	0.2	8
34	A survey of tuberculosis infection control practices at the NIH/NIAID/DAIDS-supported clinical trial sites in low and middle income countries. BMC Infectious Diseases, 2016, 16, 269.	1.3	9
35	Human Immunodeficiency Virus (HIV)-Infected Patients Accept Finger Stick Blood Collection for Point-Of-Care CD4 Testing. PLoS ONE, 2016, 11, e0161891.	1.1	11
36	Options to Expand HIV Viral Load Testing in South Africa: Evaluation of the GeneXpert® HIV-1 Viral Load Assay. PLoS ONE, 2016, 11, e0168244.	1.1	40

#	Article	IF	CITATION
37	Laboratory Evaluation of the Liat HIV Quant (IQuum) Whole-Blood and Plasma HIV-1 Viral Load Assays for Point-of-Care Testing in South Africa. Journal of Clinical Microbiology, 2015, 53, 1616-1621.	1.8	36
38	A High Burden Human Immunodeficiency Virus and Tuberculosis Resource Limited Setting, Gains from Including Xpert MTB/RIF in the Diagnostic Algorithm of Fluid Specimens Submitted for Exclusion of Lymphoma by Immunophenotypic Analysis. PLoS ONE, 2015, 10, e0134404.	1.1	4
39	Diagnostic Accuracy of Xpert MTB/RIF for Extrapulmonary Tuberculosis Specimens: Establishing a Laboratory Testing Algorithm for South Africa. Journal of Clinical Microbiology, 2014, 52, 1818-1823.	1.8	93
40	Multicenter Feasibility Study To Assess External Quality Assessment Panels for Xpert MTB/RIF Assay in South Africa. Journal of Clinical Microbiology, 2014, 52, 2493-2499.	1.8	26
41	Feasibility of Performing Multiple Point of Care Testing for HIV Anti-Retroviral Treatment Initiation and Monitoring from Multiple or Single Fingersticks. PLoS ONE, 2013, 8, e85265.	1.1	25
42	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 0, , .	13.7	61