George Lauder

List of Publications by Citations

Source: https://exaly.com/author-pdf/7530846/george-lauder-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 160
 9,879
 62
 94

 papers
 h-index
 g-index

 170
 11,676
 5.2
 6.74

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
160	Phototactic guidance of a tissue-engineered soft-robotic ray. <i>Science</i> , 2016 , 353, 158-62	33.3	371
159	Form and function: structural analysis in evolutionary morphology. <i>Paleobiology</i> , 1981 , 7, 430-442	2.6	334
158	The hydrodynamics of eel swimming: I. Wake structure. <i>Journal of Experimental Biology</i> , 2004 , 207, 1825	5-341	284
157	Biomimetic shark skin: design, fabrication and hydrodynamic function. <i>Journal of Experimental Biology</i> , 2014 , 217, 1656-66	3	247
156	Fish biorobotics: kinematics and hydrodynamics of self-propulsion. <i>Journal of Experimental Biology</i> , 2007 , 210, 2767-80	3	233
155	Evolution of the feeding mechanism in primitive actionopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia. <i>Journal of Morphology</i> , 1980 , 163, 283-317	1.6	222
154	Passive propulsion in vortex wakes. <i>Journal of Fluid Mechanics</i> , 2006 , 549, 385	3.7	216
153	The hydrodynamic function of shark skin and two biomimetic applications. <i>Journal of Experimental Biology</i> , 2012 , 215, 785-95	3	184
152	Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. <i>Journal of Experimental Biology</i> , 2001 , 204, 2943-2958	3	171
151	Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). <i>Journal of Experimental Biology</i> , 2002 , 205, 1709-1724	3	151
150	The Suction Feeding Mechanism in Sunfishes (Lepomis): An Experimental Analysis. <i>Journal of Experimental Biology</i> , 1980 , 88, 49-72	3	151
149	Scaling the propulsive performance of heaving flexible panels. <i>Journal of Fluid Mechanics</i> , 2014 , 738, 250-267	3.7	144
148	Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. <i>Journal of Experimental Biology</i> , 2005 , 208, 2753-63	3	141
147	Hydrodynamics of a biologically inspired tandem flapping foil configuration. <i>Theoretical and Computational Fluid Dynamics</i> , 2007 , 21, 155-170	2.3	139
146	Patterns of Evolution in the Feeding Mechanism of Actinopterygian Fishes. <i>American Zoologist</i> , 1982 , 22, 275-285		135
145	Dynamics of freely swimming flexible foils. <i>Physics of Fluids</i> , 2012 , 24, 051901	4.4	133
144	Fish locomotion: recent advances and new directions. <i>Annual Review of Marine Science</i> , 2015 , 7, 521-45	15.4	130

(2007-2012)

143	A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. <i>Journal of Experimental Biology</i> , 2012 , 215, 56-67	3	125
142	Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus. <i>Journal of Experimental Biology</i> , 2008 , 211, 3359-69	3	118
141	Functional and morphological bases of trophic specialization in sunfishes (Teleostei, centrarchidae). <i>Journal of Morphology</i> , 1983 , 178, 1-21	1.6	118
140	Hydrodynamics of Undulatory Propulsion. <i>Fish Physiology</i> , 2005 , 23, 425-468	2	115
139	Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders. <i>Journal of Morphology</i> , 1985 , 185, 297-326	1.6	114
138	Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. <i>Journal of Experimental Biology</i> , 2001 , 204, 2943-58	3	112
137	Learning from fish: Kinematics and experimental hydrodynamics for roboticists. <i>International Journal of Automation and Computing</i> , 2006 , 3, 325-335	3.5	110
136	How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment. <i>Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology</i> , 1994 , 175, 123-31	2.3	105
135	Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. <i>Experiments in Fluids</i> , 2007 , 43, 641-653	2.5	102
134	Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). <i>Journal of Morphology</i> , 1986 , 187, 81-108	1.6	102
133	Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. <i>Bioinspiration and Biomimetics</i> , 2006 , 1, S25-34	2.6	101
132	Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. <i>Journal of Fluid Mechanics</i> , 2010 , 645, 345-373	3.7	100
131	The mechanics of active fin-shape control in ray-finned fishes. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 243-56	4.1	98
130	Speed effects on midline kinematics during steady undulatory swimming of largemouth bass, Micropterus salmoides. <i>Journal of Experimental Biology</i> , 1995 , 198, 585-602	3	98
129	The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. <i>Journal of Experimental Biology</i> , 2010 , 213, 4043-54	3	97
128	Aquatic prey capture in ray-finned fishes: a century of progress and new directions. <i>Journal of Morphology</i> , 2001 , 248, 99-119	1.6	97
127	Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. <i>Journal of Experimental Biology</i> , 2005 , 208, 4479-94	3	95
126	Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). <i>Journal of Experimental Biology</i> , 2007 , 210, 325-39	3	94

125	Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization, and Evolutionary Patterns. <i>American Zoologist</i> , 2000 , 40, 101-122		93
124	Maximizing the efficiency of a flexible propulsor using experimental optimization. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 430-448	3.7	90
123	Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. <i>Bioinspiration and Biomimetics</i> , 2011 , 6, 026004	2.6	87
122	Flexible propulsors in ground effect. <i>Bioinspiration and Biomimetics</i> , 2014 , 9, 036008	2.6	85
121	Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). <i>Journal of Experimental Biology</i> , 2002 , 205, 1709-24	3	84
120	A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. <i>Nature</i> , 2017 , 547, 445-448	50.4	83
119	Robotic Models for Studying Undulatory Locomotion in Fishes. <i>Marine Technology Society Journal</i> , 2011 , 45, 41-55	0.5	83
118	Computational analysis of vortex dynamics and performance enhancement due to bodyfin and finfin interactions in fish-like locomotion. <i>Journal of Fluid Mechanics</i> , 2017 , 829, 65-88	3.7	82
117	Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes. <i>Environmental Biology of Fishes</i> , 1981 , 6, 257-268	1.6	78
116	Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. <i>Journal of Experimental Biology</i> , 2002 , 205, 2365-2374	3	77
115	Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. <i>Science Robotics</i> , 2019 , 4,	18.6	76
114	A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. <i>Journal of Experimental Biology</i> , 2000 , 203, 2379-93	3	76
113	Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion. Bioinspiration and Biomimetics, 2015 , 10, 036002	2.6	75
112	Bioinspiration from fish for smart material design and function. <i>Smart Materials and Structures</i> , 2011 , 20, 094014	3.4	75
111	Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus. <i>Journal of Experimental Biology</i> , 2009 , 212, 277-86	3	75
110	Biomechanics: hydrodynamic function of the shark® tail. <i>Nature</i> , 2004 , 430, 850	50.4	75
109	Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data. <i>Journal of Experimental Biology</i> , 2012 , 215, 671-84	3	74
108	Prey Capture Hydrodynamics in Fishes: Experimental Tests of Two Models. <i>Journal of Experimental Biology</i> , 1983 , 104, 1-13	3	74

(2016-2008)

107	Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. Journal of Experimental Biology, 2008 , 211, 187-95	3	72
106	Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. <i>Zoological Journal of the Linnean Society</i> , 1986 , 88, 277-290	2.4	7 ²
105	Caudal Fin Locomotion in Ray-finned Fishes: Historical and Functional Analyses. <i>American Zoologist</i> , 1989 , 29, 85-102		71
104	Shark skin-inspired designs that improve aerodynamic performance. <i>Journal of the Royal Society Interface</i> , 2018 , 15,	4.1	69
103	Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding. <i>Journal of Morphology</i> , 2001 , 249, 195-209	1.6	69
102	Passive robotic models of propulsion by the bodies and caudal fins of fish. <i>Integrative and Comparative Biology</i> , 2012 , 52, 576-87	2.8	67
101	Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. <i>Journal of Fluid Mechanics</i> , 2009 , 631, 311-342	3.7	65
100	Function of the dorsal fin in bluegill sunfish: Motor patterns during four distinct locomotor behaviors. <i>Journal of Morphology</i> , 1996 , 228, 307-326	1.6	64
99	Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. <i>Journal of Fluid Mechanics</i> , 2016 , 788, 407-443	3.7	64
98	Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. Journal of Experimental Biology, 2014 , 217, 2110-20	3	60
97	The C-start escape response ofPolypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. <i>Journal of Experimental Biology</i> , 2002 , 205, 2591-2603	3	58
96	Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. <i>Journal of Experimental Biology</i> , 2002 , 205, 2365-74	3	58
95	Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry. <i>Journal of Experimental Biology</i> , 2002 , 205, 3271-3279	3	55
94	Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. <i>Journal of Experimental Biology</i> , 2000 , 203, 2261-78	3	55
93	Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. <i>Bioinspiration and Biomimetics</i> , 2015 , 10, 056019	2.6	53
92	Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus. <i>Journal of Experimental Biology</i> , 2008 , 211, 587-98	3	53
91	Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-finned Fishes. <i>Integrative and Comparative Biology</i> , 2002 , 42, 1009-17	2.8	53
90	Structure, biomimetics, and fluid dynamics of fish skin surfaces*. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	52

89	Ontogeny of form and function: locomotor morphology and drag in zebrafish (Danio rerio). <i>Journal of Morphology</i> , 2006 , 267, 1099-109	1.6	51
88	Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. <i>Physiology</i> , 2002 , 17, 235-4	40 9.8	51
87	Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing. <i>Bioinspiration and Biomimetics</i> , 2015 , 10, 066010	2.6	50
86	Water Flow Patterns During Prey Capture by Teleost Fishes. <i>Journal of Experimental Biology</i> , 1984 , 113, 143-150	3	49
85	Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. <i>Soft Robotics</i> , 2017 , 4, 202-210	9.2	48
84	Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the chub mackerel Scomber japonicus. <i>Journal of Experimental Biology</i> , 2001 , 204, 2251-2263	3	47
83	Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2011 , 278, 3670-8	4.4	46
82	Muscle Recruitment During Terrestrial Locomotion: How Speed and Temperature Affect Fibre Type Use in a Lizard. <i>Journal of Experimental Biology</i> , 1990 , 152, 101-128	3	46
81	Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi. <i>Journal of Experimental Biology</i> , 2012 , 215, 3231-41	3	45
80	Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. <i>Experiments in Fluids</i> , 2011 , 51, 23-35	2.5	45
79	On the rules for aquatic locomotion. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	44
78	Robotics-inspired biology. <i>Journal of Experimental Biology</i> , 2018 , 221,	3	43
77	Terrestrial feeding in the Mudskipper Periophthalmus (Pisces: Teleostei): A cineradiographic analysis. <i>Journal of Zoology</i> , 2009 , 193, 517-530	2	41
76	Biomechanics of Locomotion in Sharks, Rays, and Chimeras. <i>Marine Biology</i> , 2004 , 139-164		40
75	Functional Anatomy of Feeding in the Bluegill Sunfish, Lepomis Macrochirus: in Vivo Measurement of Bone Strain. <i>Journal of Experimental Biology</i> , 1980 , 84, 33-55	3	40
74	Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. <i>Bioinspiration and Biomimetics</i> , 2013 , 8, 046013	2.6	39
73	Asymmetrical Muscle Activity During Feeding in the Gar, Lepisosteus Oculatus. <i>Journal of Experimental Biology</i> , 1980 , 84, 17-32	3	39
72	Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. <i>Zoology</i> , 2014 , 117, 269-81	1.7	38

71	Functional morphology of the fin rays of teleost fishes. <i>Journal of Morphology</i> , 2013 , 274, 1044-59	1.6	36
70	Control surfaces of aquatic vertebrates: active and passive design and function. <i>Journal of Experimental Biology</i> , 2017 , 220, 4351-4363	3	36
69	The ontogeny of fin function during routine turns in zebrafish Danio rerio. <i>Journal of Experimental Biology</i> , 2007 , 210, 3374-86	3	36
68	Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13828-13833	11.5	34
67	Fish optimize sensing and respiration during undulatory swimming. <i>Nature Communications</i> , 2016 , 7, 11044	17.4	33
66	Advances in comparative physiology from high-speed imaging of animal and fluid motion. <i>Annual Review of Physiology</i> , 2008 , 70, 143-63	23.1	33
65	Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. <i>Soft Robotics</i> , 2018 , 5, 375-388	9.2	32
64	Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes. <i>Integrative and Comparative Biology</i> , 2011 , 51, 176-89	2.8	31
63	Diversity of dermal denticle structure in sharks: Skin surface roughness and three-dimensional morphology. <i>Journal of Morphology</i> , 2018 , 279, 1132-1154	1.6	31
62	Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed. <i>Bioinspiration and Biomimetics</i> , 2018 , 13, 056014	2.6	30
61	High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13048-13053	11.5	30
60	Functional morphology of the "tongue-bite" in the osteoglossomorph fish Notopterus. <i>Journal of Morphology</i> , 1989 , 202, 379-408	1.6	30
59	Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. <i>Zoology</i> , 2016 , 119, 182-195	1.7	29
58	Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models. <i>Integrative and Comparative Biology</i> , 2015 , 55, 728-39	2.8	28
57	Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors. <i>Zoology</i> , 2014 , 117, 337-48	1.7	28
56	Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement. <i>Physics of Fluids</i> , 2020 , 32, 011902	4.4	28
55	Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	27
54	Challenging zebrafish escape responses by increasing water viscosity. <i>Journal of Experimental Biology</i> , 2012 , 215, 1854-62	3	27

53	Batoid locomotion: effects of speed on pectoral fin deformation in the little skate,. <i>Journal of Experimental Biology</i> , 2017 , 220, 705-712	3	27
52	Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the chub mackerel Scomber japonicus. <i>Journal of Experimental Biology</i> , 2001 , 204, 2251-63	3	27
51	Tail-propelled aquatic locomotion in a theropod dinosaur. <i>Nature</i> , 2020 , 581, 67-70	50.4	26
50	Swimming Mechanics and Energetics of Elasmobranch Fishes. Fish Physiology, 2015, 219-253	2	24
49	Functional regionalization of the pectoral fin of the benthic longhorn sculpin during station holding and swimming. <i>Journal of Zoology</i> , 2008 , 276, 159-167	2	24
48	Structure and function in the tail of the Pumpkinseed sunfish (Lepomis gibbosus). <i>Journal of Zoology</i> , 1982 , 197, 483-495	2	23
47	Pressure and Water Flow Patterns in the Respiratory Tract of the Bass (Micropterus Salmoides). <i>Journal of Experimental Biology</i> , 1984 , 113, 151-164	3	23
46	A Biologically Derived Pectoral Fin for Yaw Turn Manoeuvres. <i>Applied Bionics and Biomechanics</i> , 2010 , 7, 41-55	1.6	22
45	Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature. <i>Journal of Experimental Biology</i> , 2012 , 215, 2881-90	3	22
44	A pressure-based force and torque prediction technique for the study of fish-like swimming. <i>PLoS ONE</i> , 2017 , 12, e0189225	3.7	22
43	Tuna locomotion: a computational hydrodynamic analysis of finlet function. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20190590	4.1	22
42	Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. <i>Springer Tracts in Mechanical Engineering</i> , 2015 , 25-49	0.3	21
41	Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement. <i>Journal of Experimental Biology</i> , 2012 , 215, 2869-80	3	21
40	Passing the Wake: Using Multiple Fins to Shape Forces for Swimming. <i>Biomimetics</i> , 2019 , 4,	3.7	20
39	Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. <i>Bioinspiration and Biomimetics</i> , 2020 , 15, 046008	2.6	20
38	Airfoil-like mechanics generate thrust on the anterior body of swimming fishes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10585-10592	11.5	20
37	Comparative morphology of the myomeres and axial skeleton in four genera of centrarchid fishes. <i>Journal of Morphology</i> , 1994 , 220, 185-205	1.6	20
36	Imaging biological surface topography in situ and in vivo. <i>Methods in Ecology and Evolution</i> , 2017 , 8, 16	26 7 .1 / 63	819

35	Multi-animal pose estimation and tracking with DeepLabCut		18
34	Ontogeny of head and caudal fin shape of an apex marine predator: The tiger shark (Galeocerdo cuvier). <i>Journal of Morphology</i> , 2016 , 277, 556-64	1.6	18
33	Modeling red muscle power output during steady and unsteady swimming in largemouth bass. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994 , 267, R481-8	3.2	17
32	Prey transport in the tiger salamander: Quantitative electromyography and muscle function in tetrapods. <i>The Journal of Experimental Zoology</i> , 1991 , 260, 1-17		17
31	An autonomously swimming biohybrid fish designed with human cardiac biophysics <i>Science</i> , 2022 , 375, 639-647	33.3	17
30	Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming. Journal of Experimental Biology, 2017 , 220, 3967-3975	3	14
29	Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. <i>Bioinspiration and Biomimetics</i> , 2020 ,	2.6	14
28	Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus. <i>Journal of Experimental Biology</i> , 2000 , 203, 2247-59	3	13
27	Performance variation due to stiffness in a tuna-inspired flexible foil model. <i>Bioinspiration and Biomimetics</i> , 2017 , 12, 016011	2.6	12
26	Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles. <i>Bioinspiration and Biomimetics</i> , 2020 , 15, 035007	2.6	12
25	How smooth is a dolphin? The ridged skin of odontocetes. <i>Biology Letters</i> , 2019 , 15, 20190103	3.6	12
24	Effect of input perturbation on the performance and wake dynamics of aquatic propulsion in heaving flexible foils. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	11
23	Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus. <i>Zoology</i> , 2016 , 119, 414-420	1.7	10
22	Multi-animal pose estimation, identification and tracking with DeepLabCut <i>Nature Methods</i> , 2022 ,	21.6	10
21	A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics. <i>Journal of Experimental Biology</i> , 2016 , 219, 2048-59	3	8
20	Convergence of undulatory swimming kinematics across a diversity of fishes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
19	The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species. <i>Journal of Morphology</i> , 2020 , 281, 938-955	1.6	6
18	Experimental morphology of the feeding mechanism in salamanders. <i>Journal of Morphology</i> , 1991 , 210, 33-44	1.6	6

17	Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot. <i>Bioinspiration and Biomimetics</i> , 2020 ,	2.6	6
16	Scale diversity in bigeye tuna (Thunnus obesus): Fat-filled trabecular scales made of cellular bone. <i>Journal of Morphology</i> , 2018 , 279, 828-840	1.6	5
15	Hydrodynamic advantages of in-line schooling. <i>Bioinspiration and Biomimetics</i> , 2021 , 16,	2.6	5
14	Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models. <i>Bioinspiration and Biomimetics</i> , 2016 , 11, 046006	2.6	5
13	How zebrafish turn: analysis of pressure force dynamics and mechanical work. <i>Journal of Experimental Biology</i> , 2020 , 223,	3	4
12	The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion. <i>Integrative and Comparative Biology</i> , 2021 , 61, 398-413	2.8	4
11	Tuna robotics: hydrodynamics of rapid linear accelerations. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20202726	4.4	4
10	Fin-fin interactions during locomotion in a simplified biomimetic fish model. <i>Bioinspiration and Biomimetics</i> , 2021 , 16,	2.6	2
9	Development of a vortex generator to perturb fish locomotion. <i>Journal of Experimental Biology</i> , 2017 , 220, 959-963	3	1
8	Computational study of fish-shaped panel with simultaneously heaving and bending motion 2019,		1
7	The role of an overlooked adductor muscle in the feeding mechanism of ray-finned fishes: Predictions from simulations of a deep-sea viperfish. <i>Zoology</i> , 2019 , 135, 125678	1.7	1
6	Longer development provides first-feeding fish time to escape hydrodynamic constraints. <i>Journal of Morphology</i> , 2020 , 281, 956-969	1.6	1
5	Dermal Denticle Diversity in Sharks: Novel Patterns on the Interbranchial Skin <i>Integrative Organismal Biology</i> , 2021 , 3, obab034	2.3	1
4	Structure of supporting elements in the dorsal fin of percid fishes. <i>Journal of Morphology</i> , 2017 , 278, 1716-1725	1.6	O
3	Edward Phelps Allis: discovery of his anatomical illustrations. <i>Biological Journal of the Linnean Society</i> , 1981 , 16, 285-291	1.9	
2	A Soft Robotic Model to Study the Effects of Stiffness on Fish-Like Undulatory Swimming 2021 , 153-10	59	
1	Metazoan Transitions: Invasions of the Land . The Transitions of Organisms from Aquatic to Terrestrial Life. Malcolm S. Gordon and Everett C. Olson. Columbia University Press, New York, 1995. xix, 312 pp., illus. \$65 or 任49 <i>Science</i> , 1995 , 268, 1208-1208	33.3	