Miguel A. Sanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753066/publications.pdf

Version: 2024-02-01

331670 454955 1,178 31 21 30 h-index citations g-index papers 31 31 31 1326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Translational resistance of late alphavirus mRNA to eIF2Â phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes and Development, 2006, 20, 87-100.	5.9	176
2	System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 2019, 74, 196-211.e11.	9.7	137
3	Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. Journal of Biological Chemistry, 1994, 269, 12106-10.	3.4	71
4	Viroporin activity of murine hepatitis virus E protein. FEBS Letters, 2005, 579, 3607-3612.	2.8	70
5	The Regulation of Translation in Alphavirus-Infected Cells. Viruses, 2018, 10, 70.	3.3	63
6	Interfacial Domains in Sindbis Virus 6K Protein. Journal of Biological Chemistry, 2003, 278, 2051-2057.	3.4	53
7	Sindbis Virus Variant with a Deletion in the 6K Gene Shows Defects in Glycoprotein Processing and Trafficking: Lack of Complementation by a Wild-Type 6K Gene in trans. Journal of Virology, 2001, 75, 7778-7784.	3.4	48
8	A Role for 3AB Protein in Poliovirus Genome Replication. Journal of Biological Chemistry, 1995, 270, 14430-14438.	3.4	46
9	Translation of Sindbis Virus 26S mRNA Does Not Require Intact Eukariotic Initiation Factor 4G. Journal of Molecular Biology, 2006, 355, 942-956.	4.2	45
10	Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 2009, 4, e4772.	2.5	44
11	Genetic analysis of poliovirus protein 3A: characterization of a non-cytopathic mutant virus defective in killing Vero cells Journal of General Virology, 1998, 79, 1911-1921.	2.9	37
12	Viral Translation Is Coupled to Transcription in Sindbis Virus-Infected Cells. Journal of Virology, 2007, 81, 7061-7068.	3.4	36
13	Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Virology, 2005, 332, 307-315.	2.4	33
14	The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. Frontiers in Microbiology, 2018, 9, 207.	3.5	31
15	Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Scientific Reports, 2017, 7, 43876.	3.3	30
16	Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells. Cellular Microbiology, 2013, 15, 823-840.	2.1	29
17	Translation without eIF2 Promoted by Poliovirus 2A Protease. PLoS ONE, 2011, 6, e25699.	2.5	26
18	Translation of Viral mRNA without Active eIF2: The Case of Picornaviruses. PLoS ONE, 2011, 6, e22230.	2.5	24

#	Article	IF	CITATIONS
19	Translation Directed by Hepatitis A Virus IRES in the Absence of Active eIF4F Complex and eIF2. PLoS ONE, 2012, 7, e52065.	2.5	23
20	Individual Expression of Sindbis Virus Glycoproteins. E1 Alone Promotes Cell Fusion. Virology, 2003, 305, 463-472.	2.4	21
21	Translation Driven by Picornavirus IRES Is Hampered from Sindbis Virus Replicons: Rescue by Poliovirus 2A Protease. Journal of Molecular Biology, 2010, 402, 101-117.	4.2	21
22	A Viral mRNA Motif at the $3\hat{a}\in^2$ -Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution. Scientific Reports, 2016, 6, 19217.	3.3	21
23	Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology, 2015, 484, 41-50.	2.4	19
24	Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA. Rna, 2015, 21, 93-112.	3.5	15
25	Phosphorylation of eIF2α is responsible for the failure of the picornavirus internal ribosome entry site to direct translation from Sindbis virus replicons. Journal of General Virology, 2013, 94, 796-806.	2.9	11
26	Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein. FEBS Letters, 2004, 576, 417-422.	2.8	10
27	Differential inhibition of cellular and Sindbis virus translation by brefeldin A. Virology, 2007, 363, 430-436.	2.4	10
28	Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm. Cellular Microbiology, 2015, 17, 520-541.	2.1	10
29	A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. Rna, 2019, 25, 431-452.	3 . 5	8
30	Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology, 2013, 444, 171-180.	2.4	6
31	The Alphavirus 6K Protein. , 2005, , 233-244.		4