Gloria Mas Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7530406/publications.pdf

Version: 2024-02-01

21 papers

1,699 citations

430874 18 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

3178 citing authors

#	Article	IF	CITATIONS
1	In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of <i>Klf4</i> in suppressing early leukemic transformation. Genes and Development, 2022, 36, 451-467.	5.9	1
2	p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight, 2021, 6, .	5.0	11
3	TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nature Communications, 2019, 10, 4925.	12.8	31
4	Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nature Genetics, 2018, 50, 1452-1462.	21.4	113
5	Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Molecular Cell, 2017, 65, 460-475.e6.	9.7	81
6	ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia. Cancer Discovery, 2016, 6, 770-783.	9.4	122
7	The role of Polycomb in stem cell genome architecture. Current Opinion in Cell Biology, 2016, 43, 87-95.	5.4	24
8	H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Research, 2015, 43, 4937-4949.	14.5	34
9	Regulation of gene transcription by Polycomb proteins. Science Advances, 2015, 1, e1500737.	10.3	287
10	Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes and Development, 2015, 29, 1795-1800.	5. 9	65
11	Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics, 2014, 9, 513-522.	2.7	28
12	Proteome-wide enrichment of proteins modified by lysine methylation. Nature Protocols, 2014, 9, 37-50.	12.0	71
13	Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression. Genomics Data, 2014, 2, 216-218.	1.3	3
14	Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Scientific Reports, 2013, 3, 2137.	3.3	51
15	Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics, 2012, 7, 340-343.	2.7	158
16	Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nature Structural and Molecular Biology, 2012, 19, 1257-1265.	8.2	229
17	Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nature Structural and Molecular Biology, 2012, 19, 361-363.	8.2	49
18	Cooperation between the INO80 Complex and Histone Chaperones Determines Adaptation of Stress Gene Transcription in the Yeast <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2009, 29, 4994-5007.	2.3	53

#	Article	IF	CITATIONS
19	Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO Journal, 2009, 28, 326-336.	7.8	104
20	The Stress-Activated Hog1 Kinase Is a Selective Transcriptional Elongation Factor for Genes Responding to Osmotic Stress. Molecular Cell, 2006, 23, 241-250.	9.7	140
21	Expression of the HXT1 Low Affinity Glucose Transporter Requires the Coordinated Activities of the HOG and Glucose Signalling Pathways. Journal of Biological Chemistry, 2004, 279, 22010-22019.	3.4	44