Zhichao Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7530038/publications.pdf

Version: 2024-02-01

134610 129628 4,077 65 34 63 citations g-index h-index papers 67 67 67 4282 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
2	Underwater Unidirectional Cellular Fluidics. ACS Applied Materials & Eamp; Interfaces, 2022, 14, 9891-9898.	4.0	14
3	Nasal Cavity Inspired Microâ€Nanostructured Cone Array Tube for Oil Recovery in Wastewater. Advanced Materials Interfaces, 2022, 9, .	1.9	5
4	Beating Worthington jet by surfactants. Cell Reports Physical Science, 2022, 3, 100775.	2.8	3
5	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	15
6	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces (Adv. Funct.) Tj ETQq0	0 0 ₇ .gBT /	Overlock 10 Ti
7	Three-Dimensional Open Water Microchannel Transpiration Mimetics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30435-30442.	4.0	13
8	Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. Advanced Functional Materials, 2021, 31, 2006606.	7.8	83
9	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. Advanced Materials Interfaces, 2021, 8, 2000824.	1.9	21
10	Superamphiphilic TiO ₂ Composite Surface for Protein Antifouling. Advanced Materials, 2021, 33, e2003559.	11.1	32
11	Bioinspired magnetically driven liquid manipulation as microrobot. Cell Reports Physical Science, 2021, 2, 100439.	2.8	15
12	3D Printing a Biomimetic Bridgeâ€Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Advanced Materials, 2021, 33, e2102443.	11.1	172
13	Efficient spreading and controllable penetration of high-speed drops on superhydrophobic surface by vesicles. Journal of Materials Chemistry A, 2020, 8, 17392-17398.	5.2	32
14	Finger directed surface charges for local droplet motion. Soft Matter, 2020, 16, 9176-9182.	1.2	9
15	Continuous 3D printing from one single droplet. Nature Communications, 2020, 11, 4685.	5.8	47
16	Liquid harvesting and transport on multiscaled curvatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23436-23442.	3.3	78
17	Directional liquid dynamics of interfaces with superwettability. Science Advances, 2020, 6, .	4.7	146
18	Droplets Crawling on Peristomeâ€Mimetic Surfaces. Advanced Functional Materials, 2020, 30, 1908066.	7.8	15

#	Article	IF	CITATIONS
19	Apex structures enhance water drainage on leaves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1890-1894.	3.3	33
20	Bioinspired Smart Liquid Directional Transport Control. Langmuir, 2020, 36, 667-681.	1.6	31
21	Directed motion of an impinging water dropletâ€"seesaw effect. Journal of Materials Chemistry A, 2020, 8, 7889-7896.	5.2	23
22	Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 2020, 11, 521.	5.8	348
23	Programmable unidirectional liquid transport on peristome-mimetic surfaces under liquid environments. Journal of Materials Chemistry A, 2019, 7, 18244-18248.	5.2	22
24	Enhancing Droplet Deposition on Wired and Curved Superhydrophobic Leaves. ACS Nano, 2019, 13, 7966-7974.	7.3	107
25	Controllable Highâ€Speed Electrostatic Manipulation of Water Droplets on a Superhydrophobic Surface. Advanced Materials, 2019, 31, e1905449.	11.1	121
26	Wettability manipulation of overflow behavior <i>via</i> vesicle surfactant for water-proof surface cleaning. Materials Horizons, 2019, 6, 294-301.	6.4	34
27	Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk <i>via</i> a Surface Energy Gradient. ACS Nano, 2019, 13, 13100-13108.	7.3	15
28	Uniform Spread of Highâ€Speed Drops on Superhydrophobic Surface by Liveâ€Oligomeric Surfactant Jamming. Advanced Materials, 2019, 31, e1904475.	11.1	49
29	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	5.6	20
30	Bioinspired inner microstructured tube controlled capillary rise. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12704-12709.	3.3	92
31	Asymmetric micro-ratchets regulated drop dispensing on bamboo mimetic surface. Journal of Materials Chemistry A, 2019, 7, 9550-9555.	5.2	8
32	Adaptive Superamphiphilic Organohydrogels with Reconfigurable Surface Topography for Programming Unidirectional Liquid Transport. Advanced Functional Materials, 2019, 29, 1807858.	7.8	54
33	Janus Gradient Meshes for Continuous Separation and Collection of Flowing Oils under Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7504-7511.	4.0	36
34	Designing Laplace Pressure Pattern for Microdroplet Manipulation. Langmuir, 2018, 34, 639-645.	1.6	13
35	Wetting and spreading: Fundamental theories to cutting-edge applications. Current Opinion in Colloid and Interface Science, 2018, 36, 10-19.	3.4	55
36	Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation. Advanced Materials, 2018, 30, 1703838.	11.1	68

#	Article	IF	Citations
37	Time-Dependent Liquid Transport on a Biomimetic Topological Surface. ACS Nano, 2018, 12, 5149-5157.	7.3	52
38	Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. Journal of Materials Chemistry A, 2018, 6, 24468-24478.	5.2	98
39	Dualâ€Programmable Shapeâ€Morphing and Selfâ€Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks. Advanced Materials, 2018, 30, e1804435.	11.1	91
40	Drop Cargo Transfer <i>via</i> Unidirectional Lubricant Spreading on Peristome-Mimetic Surface. ACS Nano, 2018, 12, 11307-11315.	7.3	33
41	Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. ACS Central Science, 2018, 4, 1102-1112.	5.3	321
42	Smart Liquid Transport on Dual Biomimetic Surface via Temperature Fluctuation Control. Advanced Functional Materials, 2018, 28, 1707490.	7.8	47
43	Liquids Unidirectional Transport on Dual-Scale Arrays. ACS Nano, 2018, 12, 9214-9222.	7.3	59
44	Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. Research, 2018, 2018, 4795604.	2.8	49
45	Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. Science Advances, 2017, 3, e1602188.	4.7	218
46	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie, 2017, 129, 13811-13816.	1.6	19
47	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie - International Edition, 2017, 56, 13623-13628.	7.2	84
48	Surfaces Inspired by the <i>Nepenthes</i> Peristome for Unidirectional Liquid Transport. Advanced Materials, 2017, 29, 1702995.	11.1	93
49	Reducing the contact time using macro anisotropic superhydrophobic surfaces — effect of parallel wire spacing on the drop impact. NPG Asia Materials, 2017, 9, e415-e415.	3.8	79
50	Spontaneous and Directional Transportation of Gas Bubbles on Superhydrophobic Cones. Advanced Functional Materials, 2016, 26, 3236-3243.	7.8	157
51	Titelbild: Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids (Angew. Chem. 48/2016). Angewandte Chemie, 2016, 128, 15097-15097.	1.6	2
52	Uniâ€Directional Transportation on Peristomeâ€Mimetic Surfaces for Completely Wetting Liquids. Angewandte Chemie, 2016, 128, 15212-15216.	1.6	5
53	Aerophilic Electrode with Cone Shape for Continuous Generation and Efficient Collection of H ₂ Bubbles. Advanced Functional Materials, 2016, 26, 6830-6835.	7.8	72
54	Emerging Progress of Inkjet Technology in Printing Optical Materials. Advanced Optical Materials, 2016, 4, 1915-1932.	3.6	84

#	Article	IF	CITATIONS
55	Uniâ€Directional Transportation on Peristomeâ€Mimetic Surfaces for Completely Wetting Liquids. Angewandte Chemie - International Edition, 2016, 55, 14988-14992.	7.2	134
56	New conceptual microfluidics technology: light manipulation of liquid slugs in liquid crystal polymer microactuators. Science China Materials, 2016, 59, 997-999.	3.5	3
57	Superhydrophobic "Pump― Continuous and Spontaneous Antigravity Water Delivery. Advanced Functional Materials, 2015, 25, 4114-4119.	7.8	111
58	Manipulating Oil Droplets by Superamphiphobic Nozzle. Small, 2015, 11, 4837-4843.	5.2	43
59	Oil Droplets: Manipulating Oil Droplets by Superamphiphobic Nozzle (Small 37/2015). Small, 2015, 11, 4988-4988.	5.2	O
60	Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Advanced Functional Materials, 2015, 25, 2237-2242.	7.8	157
61	Superwettability Controlled Overflow. Advanced Materials, 2015, 27, 1745-1750.	11.1	49
62	Manipulating Overflow Separation Directions by Wettability Boundary Positions. ACS Nano, 2015, 9, 6595-6602.	7.3	30
63	Asymmetric Dewetting: Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line (Adv. Funct. Mater. 15/2015). Advanced Functional Materials, 2015, 25, 2344-2344.	7.8	O
64	Manipulating and Dispensing Micro/Nanoliter Droplets by Superhydrophobic Needle Nozzles. ACS Nano, 2013, 7, 10371-10379.	7.3	114
65	Aligned silicon nanowires with fineâ€ŧunable tilting angles by metalâ€assisted chemical etching on offâ€cut wafers. Physica Status Solidi - Rapid Research Letters, 2013, 7, 655-658.	1.2	6