
Jayne C Hope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histological and immunohistochemical features suggesting aetiological differences in lymph node and (muco)cutaneous feline tuberculosis lesions. Journal of Small Animal Practice, 2022, 63, 174-187.	0.5	1
2	Characterisation of dendritic cell frequency and phenotype in bovine afferent lymph reveals kinetic changes in costimulatory molecule expression. Veterinary Immunology and Immunopathology, 2022, 243, 110363.	0.5	1
3	Ocular mycobacterial lesions in cats. Veterinary Pathology, 2022, , 030098582210984.	0.8	0
4	Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens, 2022, 11, 738.	1.2	2
5	Serial Interferon-Gamma Release Assay (IGRA) Testing to Monitor Treatment Responses in Cases of Feline Mycobacteriosis. Pathogens, 2021, 10, 657.	1.2	1
6	Diagnostic accuracy of the interferon-gamma release assay (IGRA) for cases of feline mycobacteriosis. Preventive Veterinary Medicine, 2021, 193, 105409.	0.7	6
7	Recognition of recombinant interferon-gamma from Felidae species by anti-cat antibodies. Veterinary Immunology and Immunopathology, 2021, 241, 110327.	0.5	1
8	Anatomical distribution of respiratory tract leukocyte cell subsets in neonatal calves. Veterinary Immunology and Immunopathology, 2020, 227, 110090.	0.5	2
9	Ocular Tuberculosis: More than â€~Of Mice and Men'. Ocular Immunology and Inflammation, 2020, , 1-5.	1.0	3
10	Tuberculosis due to <i>Mycobacterium bovis</i> in pet cats associated with feeding a commercial raw food diet. Journal of Feline Medicine and Surgery, 2019, 21, 667-681.	0.6	28
11	Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle. Veterinary Research, 2019, 50, 99.	1.1	15
12	Cytokine and Chemokine Concentrations as Biomarkers of Feline Mycobacteriosis. Scientific Reports, 2018, 8, 17314.	1.6	7
13	An outbreak of tuberculosis due to <i>Mycobacterium bovis</i> infection in a pack of English Foxhounds (2016-2017). Transboundary and Emerging Diseases, 2018, 65, 1872-1884.	1.3	22
14	Frequency and phenotype of natural killer cells and natural killer cell subsets in bovine lymphoid compartments and blood. Immunology, 2017, 151, 89-97.	2.0	10
15	Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing Escherichia coli. Infection and Immunity, 2017, 85, .	1.0	6
16	Enhancing the toolbox to study IL-17A in cattle and sheep. Veterinary Research, 2017, 48, 20.	1.1	17
17	Subset-Specific Expression of Toll-Like Receptors by Bovine Afferent Lymph Dendritic Cells. Frontiers in Veterinary Science, 2017, 4, 44.	0.9	10
18	Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Veterinary Research, 2017, 48, 42.	1.1	171

#	Article	IF	CITATIONS
19	The Immune System of Cattle. , 2016, , 532-537.		Ο
20	Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends in Parasitology, 2016, 32, 599-607.	1.5	127
21	Interactions between natural killer cells and dendritic cells favour T helper1-type responses to BCG in calves. Veterinary Research, 2016, 47, 85.	1.1	15
22	Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. Journal of General Virology, 2016, 97, 2703-2718.	1.3	2
23	Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Veterinary Research, 2015, 46, 112.	1.1	49
24	Immunity, safety and protection of an Adenovirus 5 prime - Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves. Veterinary Research, 2014, 45, 112.	1.1	17
25	Bovine γδT Cells Are a Major Regulatory T Cell Subset. Journal of Immunology, 2014, 193, 208-222.	0.4	90
26	NKp46+CD3+ Cells: A Novel Nonconventional T Cell Subset in Cattle Exhibiting Both NK Cell and T Cell Features. Journal of Immunology, 2014, 192, 3868-3880.	0.4	34
27	Differential recruitment and activation of natural killer cell subâ€populations by <i>Mycobacterium bovis</i> â€infected dendritic cells. European Journal of Immunology, 2013, 43, 159-169.	1.6	16
28	Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection. Journal of Virology, 2013, 87, 9333-9343.	1.5	11
29	Natural Killer Cells in Afferent Lymph Express an Activated Phenotype and Readily Produce IFN-Î ³ . Frontiers in Immunology, 2013, 4, 395.	2.2	9
30	The Double-Stranded RNA Bluetongue Virus Induces Type I Interferon in Plasmacytoid Dendritic Cells via a MYD88-Dependent TLR7/8-Independent Signaling Pathway. Journal of Virology, 2012, 86, 5817-5828.	1.5	45
31	Duration of Immunity against Mycobacterium bovis following Neonatal Vaccination with Bacillus Calmette-Guérin Danish: Significant Protection against Infection at 12, but Not 24, Months. Vaccine Journal, 2012, 19, 1254-1260.	3.2	58
32	Bovine γδT cells: Cells with multiple functions and important roles in immunity. Veterinary Immunology and Immunopathology, 2012, 148, 161-167.	0.5	58
33	Modified Vaccinia Virus Ankara-Based Vaccine Vectors Induce Apoptosis in Dendritic Cells Draining from the Skin via both the Extrinsic and Intrinsic Caspase Pathways, Preventing Efficient Antigen Presentation. Journal of Virology, 2012, 86, 5452-5466.	1.5	35
34	CD205 antigen targeting combined with dendritic cell recruitment factors and antigen-linked CD40L activation primes and expands significant antigen-specific antibody and CD4+ T cell responses following DNA vaccination of outbred animals. Vaccine, 2012, 30, 1624-1635.	1.7	36
35	Migratory sub-populations of afferent lymphatic dendritic cells differ in their interactions with Mycobacterium bovis Bacille Calmette Guerin. Vaccine, 2012, 30, 2357-2367.	1.7	22
36	Breadth of the CD4+ T cell response to Anaplasma marginale VirB9-1, VirB9-2 and VirB10 and MHC class II DR and DQ restriction elements. Immunogenetics, 2012, 64, 507-523.	1.2	15

#	Article	IF	CITATIONS
37	BCG vaccination of neonatal calves: Potential roles for innate immune cells in the induction of protective immunity. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 219-226.	0.7	19
38	Tools and reagents for caprine immunology. Small Ruminant Research, 2012, 103, 23-27.	0.6	30
39	Differential Effects of Viral Vectors on Migratory Afferent Lymph Dendritic Cells <i>In Vitro</i> Predict Enhanced Immunogenicity <i>In Vivo</i> . Journal of Virology, 2011, 85, 9385-9394.	1.5	38
40	Characterisation of antibodies to bovine toll-like receptor (TLR)-2 and cross-reactivity with ovine TLR2. Veterinary Immunology and Immunopathology, 2011, 139, 313-318.	0.5	13
41	Tuberculosis Immunity: Opportunities from Studies with Cattle. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	104
42	Autophagy in the immune response to tuberculosis: clinical perspectives. Clinical and Experimental Immunology, 2011, 164, 291-300.	1.1	76
43	Cytotoxicity and cytokine production by bovine alveolar macrophages challenged with wild type and leukotoxin-deficient Mannheimia haemolytica. Veterinary Journal, 2011, 188, 221-227.	0.6	11
44	Identification of Surrogates and Correlates of Protection in Protective Immunity against <i>Mycobacterium bovis</i> Infection Induced in Neonatal Calves by Vaccination with <i>M. bovis</i> BCG Pasteur and <i>M. bovis</i> BCG Danish. Vaccine Journal, 2011, 18, 373-379.	3.2	52
45	Foot-and-Mouth Disease Virus Exhibits an Altered Tropism in the Presence of Specific Immunoglobulins, Enabling Productive Infection and Killing of Dendritic Cells. Journal of Virology, 2011, 85, 2212-2223.	1.5	26
46	Existence of CD8α-Like Dendritic Cells with a Conserved Functional Specialization and a Common Molecular Signature in Distant Mammalian Species. Journal of Immunology, 2010, 185, 3313-3325.	0.4	107
47	Production and characterization of two monoclonal antibodies to bovine tumour necrosis factor alpha (TNF-α) and their cross-reactivity with ovine TNF-α. Veterinary Immunology and Immunopathology, 2010, 135, 320-324.	0.5	22
48	Relative quantitative kinetics of interferon-gamma and interleukin-10 mRNA and protein production by activated ovine peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 2010, 136, 34-42.	0.5	9
49	Differential distribution of WC1+ γδTCR+ T lymphocyte subsets within lymphoid tissues of the head and respiratory tract and effects of intranasal M. bovis BCG vaccination. Veterinary Immunology and Immunopathology, 2010, 136, 133-137.	0.5	41
50	Autophagy and the Immune Response to TB. Transboundary and Emerging Diseases, 2009, 56, 248-254.	1.3	35
51	Enhanced secretion of interferonâ€Î³ by bovine γδT cells induced by coculture with <i>Mycobacterium bovis</i> â€infected dendritic cells: evidence for reciprocal activating signals. Immunology, 2009, 126, 201-208.	2.0	43
52	Th1–Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Veterinary Immunology and Immunopathology, 2009, 128, 37-43.	0.5	59
53	Natural killer cell number and phenotype in bovine peripheral blood is influenced by age. Veterinary Immunology and Immunopathology, 2009, 132, 101-108.	0.5	22
54	Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation. Journal of Dairy Science, 2009, 92, 4301-4316.	1.4	87

#	Article	IF	CITATIONS
55	Bovine TB and the development of new vaccines. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 77-100.	0.7	33
56	Antigen-specific peripheral immune responses are unaltered during normal pregnancy in sheep. Journal of Reproductive Immunology, 2008, 77, 171-178.	0.8	27
57	Consequence of prior exposure to environmental mycobacteria on BCG vaccination and diagnosis of tuberculosis infection. Tuberculosis, 2008, 88, 324-334.	0.8	30
58	Development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis-infected cattle. Vaccine, 2008, 26, 5470-5476.	1.7	12
59	Tumor Necrosis Factor Blockers Influence Macrophage Responses to <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2008, 198, 1842-1850.	1.9	117
60	Plasmacytoid Dendritic Cells Migrate in Afferent Skin Lymph. Journal of Immunology, 2008, 180, 5963-5972.	0.4	58
61	DNA Vaccine Construct Incorporating Intercellular Trafficking and Intracellular Targeting Motifs Effectively Primes and Induces Memory B- and T-Cell Responses in Outbred Animals. Vaccine Journal, 2007, 14, 304-311.	3.2	22
62	Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus. Journal of the Royal Society Interface, 2007, 4, 545-551.	1.5	42
63	Workshop cluster 1+?? T-cell receptor+T cells from calves express high levels of interferon-? in response to stimulation with interleukin-12 and -18. Immunology, 2007, 120, 57-65.	2.0	32
64	Humoral and cellular immune responses to Fasciola gigantica experimental infection in buffaloes. Research in Veterinary Science, 2006, 80, 299-307.	0.9	17
65	Single-cell analysis divides bovine monocyte-derived dendritic cells into subsets expressing either high or low levels of inducible nitric oxide synthase. Veterinary Immunology and Immunopathology, 2006, 114, 1-14.	0.5	14
66	The effect of tuberculin testing on the development of cell-mediated immune responses during Mycobacterium bovis infection. Veterinary Immunology and Immunopathology, 2006, 114, 25-36.	0.5	38
67	Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nature Protocols, 2006, 1, 982-987.	5.5	38
68	Flow Cytometric Detection of Gamma Interferon Can Effectively Discriminate Mycobacterium bovis BCG-Vaccinated Cattle from M. bovis-Infected Cattle. Vaccine Journal, 2006, 13, 1343-1348.	3.2	14
69	Characterization of a Phenotypically Unique Population of CD13 + Dendritic Cells Resident in the Spleen. Vaccine Journal, 2006, 13, 1064-1069.	3.2	20
70	Bovine NK Cells Can Produce Gamma Interferon in Response to the Secreted Mycobacterial Proteins ESAT-6 and MPP14 but Not in Response to MPB70. Infection and Immunity, 2005, 73, 5628-5635.	1.0	75
71	Mycobacterium avium ssp. paratuberculosis Recombinant Heat Shock Protein 70 Interaction with Different Bovine Antigen-Presenting Cells. Scandinavian Journal of Immunology, 2005, 61, 242-250.	1.3	17
72	Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clinical and Experimental Immunology, 2005, 139, 48-56.	1.1	95

#	Article	IF	CITATIONS
73	Exposure to Mycobacterium avium induces low-level protection from Mycobacterium bovis infection but compromises diagnosis of disease in cattle. Clinical and Experimental Immunology, 2005, 141, 432-439.	1.1	90
74	Fasciola hepatica and Fasciola gigantica: Comparison of cellular response to experimental infection in sheep. Experimental Parasitology, 2005, 111, 154-159.	0.5	54
75	Development of detection methods for ruminant interleukin (IL)-4. Journal of Immunological Methods, 2005, 301, 114-123.	0.6	43
76	Vaccines for bovine tuberculosis: current views and future prospects. Expert Review of Vaccines, 2005, 4, 891-903.	2.0	20
77	Rapid and Long-Term Disappearance of CD4+ T Lymphocyte Responses Specific for <i>Anaplasma Marginale</i> Major Surface Protein-2 (MSP2) in MSP2 Vaccinates following Challenge with Live <i>A. marginale</i> . Journal of Immunology, 2005, 174, 6702-6715.	0.4	45
78	The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Veterinary Immunology and Immunopathology, 2005, 107, 201-215.	0.5	63
79	The role of dendritic cells in shaping the immune response. Animal Health Research Reviews, 2004, 5, 191-195.	1.4	40
80	Anaplasma marginale Major Surface Protein 2 CD4 + -T-Cell Epitopes Are Evenly Distributed in Conserved and Hypervariable Regions (HVR), Whereas Linear B-Cell Epitopes Are Predominantly Located in the HVR. Infection and Immunity, 2004, 72, 7360-7366.	1.0	40
81	Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology, 2004, 111, 41-52.	2.0	133
82	DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology, 2004, 111, 262-272.	2.0	69
83	NKp46 defines a subset of bovine leukocytes with natural killer cell characteristics. European Journal of Immunology, 2004, 34, 669-676.	1.6	113
84	Escherichia coli and Staphylococcus aureus Elicit Differential Innate Immune Responses following Intramammary Infection. Vaccine Journal, 2004, 11, 463-472.	2.6	403
85	Interaction of antigen presenting cells with mycobacteria. Veterinary Immunology and Immunopathology, 2004, 100, 187-195.	0.5	54
86	Variability in cytokine production and cell proliferation by mitogen-activated ovine peripheral blood mononuclear cells: modulation by interleukin (IL)-10 and IL-12. Veterinary Immunology and Immunopathology, 2004, 102, 67-76.	0.5	298
87	The effect of repeated tuberculin skin testing of cattle on immune responses and disease following experimental infection with Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2004, 102, 399-412.	0.5	41
88	Characterization of the Bovine Innate Immune Response to Intramammary Infection with Klebsiella pneumoniae. Journal of Dairy Science, 2004, 87, 2420-2432.	1.4	58
89	Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Veterinary Research, 2004, 35, 681-700.	1.1	114
90	CpG ODN 2006 and IL-12 are comparable for priming Th1 lymphocyte and IgG responses in cattle immunized with a rickettsial outer membrane protein in alum. Vaccine, 2003, 21, 3307-3318.	1.7	43

#	Article	IF	CITATIONS
91	Maturation of bovine dendritic cells by lipopeptides. Veterinary Immunology and Immunopathology, 2003, 95, 21-31.	0.5	24
92	Differential effects of bovine viral diarrhoea virus on monocytes and dendritic cells. Journal of General Virology, 2003, 84, 1771-1780.	1.3	64
93	Modulation of the Bovine Delayed-Type Hypersensitivity Responses to Defined Mycobacterial Antigens by a Synthetic Bacterial Lipopeptide. Infection and Immunity, 2003, 71, 6420-6420.	1.0	29
94	DNA-Encoded Fetal Liver Tyrosine Kinase 3 Ligand and Granulocyte Macrophage-Colony-Stimulating Factor Increase Dendritic Cell Recruitment to the Inoculation Site and Enhance Antigen-Specific CD4+ T Cell Responses Induced by DNA Vaccination of Outbred Animals. Journal of Immunology, 2002, 169, 3837-3846.	0.4	56
95	Alpha/Beta and Gamma Interferons Are Induced by Infection with Noncytopathic Bovine Viral Diarrhea Virus In Vivo. Journal of Virology, 2002, 76, 923-927.	1.5	54
96	Caveolae and caveolin in immune cells: distribution and functions. Trends in Immunology, 2002, 23, 158-164.	2.9	144
97	Development of an ELISA for bovine IL-10. Veterinary Immunology and Immunopathology, 2002, 85, 213-223.	0.5	120
98	Co-stimulation and modulation of the ensuing immune response. Veterinary Immunology and Immunopathology, 2002, 87, 123-130.	0.5	12
99	Role of bovine chemokines produced by dendritic cells in respiratory syncytial virus-induced T cell proliferation. Veterinary Immunology and Immunopathology, 2002, 87, 225-233.	0.5	18
100	Development of detection methods for ruminant interleukin (IL)-12. Journal of Immunological Methods, 2002, 266, 117-126.	0.6	58
101	Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. Clinical and Experimental Immunology, 2002, 130, 190-195.	1.1	30
102	NK-like CD8(+) cells in immunologically naÃ⁻ve neonatal calves that respond to dendritic cells infected with Mycobacterium bovis BCG. Journal of Leukocyte Biology, 2002, 71, 184-94.	1.5	34
103	Masking of two in vitro immunological assays for <i>Mycobacterium bovis</i> (BCG) in calves acutely infected with nonâ€qctopathic bovine viral diarrhoea virus. Veterinary Record, 2001, 149, 481-484.	0.2	31
104	Differences in the induction of CD8+ T cell responses by subpopulations of dendritic cells from afferent lymph are related to IL-1 alpha secretion. Journal of Leukocyte Biology, 2001, 69, 271-9.	1.5	32
105	Deficiency of IL-2 or IL-6 reduces lymphocyte proliferation, but only IL-6 deficiency decreases the contact hypersensitivity response. European Journal of Immunology, 2000, 30, 197-203.	1.6	38
106	Flt-3 Ligand, in Combination with Bovine Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-4, Promotes the Growth of Bovine Bone Marrow Derived Dendritic Cells. Scandinavian Journal of Immunology, 2000, 51, 60-66.	1.3	36
107	Dendritic Cells Induce CD4+ and CD8+ T-Cell Responses to Mycobacterium bovis and M. avium Antigens in Bacille Calmette Guerin Vaccinated and Nonvaccinated Cattle. Scandinavian Journal of Immunology, 2000, 52, 285-291.	1.3	53
108	Dendritic cells, implications on function from studies of the afferent lymph veiled cell. Veterinary Immunology and Immunopathology, 2000, 77, 1-13.	0.5	34

#	Article	IF	CITATIONS
109	Deficiency of IL-2 or IL-6 reduces lymphocyte proliferation, but only IL-6 deficiency decreases the contact hypersensitivity response. , 2000, 30, 197.		1
110	Dendritic cells in cattle: phenotype and function. Veterinary Immunology and Immunopathology, 1999, 72, 119-124.	0.5	43
111	Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. Journal of Leukocyte Biology, 1999, 66, 50-58.	1.5	176
112	Antigen-induced unresponsiveness in contact sensitivity: association of depressed T lymphocyte proliferative responses with decreased interleukin 6 secretion. Immunology Letters, 1996, 50, 29-34.	1.1	3
113	Migration of Interleukin-6 Producing Langerhans Cells to Draining Lymph Nodes following Skin Sensitization. Advances in Experimental Medicine and Biology, 1995, 378, 531-533.	0.8	6
114	Identification of dendritic cells as a major source of interleukin-6 in draining lymph nodes following skin sensitization of mice. Immunology, 1995, 86, 441-7.	2.0	25
115	Interleukin-6 Production by Draining Lymph Node Cells following Primary Contact Sensitisation of Mice: Relationship to the Proliferative Response. International Archives of Allergy and Immunology, 1994, 103, 378-383.	0.9	22
116	The kinetics of cytokine production by draining lymph node cells following primary exposure of mice to chemical allergens. Immunology, 1994, 83, 250-5.	2.0	19