
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7529271/publications.pdf Version: 2024-02-01



RIII MODEIDA

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Indole-Containing Pyrazino[2,1- <i>b</i> ]quinazoline-3,6-diones Active against <i>Plasmodium</i> and Trypanosomatids. ACS Medicinal Chemistry Letters, 2022, 13, 225-235.                                                 | 1.3  | 11        |
| 2  | Tandem Thioâ€Michael Addition/Remote Lactone Activation of 5â€Hydroxymethylfurfuralâ€Derived<br>δâ€Lactoneâ€Fused Cyclopentenones. ChemSusChem, 2022, , e202102204.                                                        | 3.6  | 2         |
| 3  | Designer Cathinones N-Ethylhexedrone and Buphedrone Show Different In Vitro Neurotoxicity and<br>Mice Behaviour Impairment. Neurotoxicity Research, 2021, 39, 392-412.                                                     | 1.3  | 6         |
| 4  | Recovery of Depleted miR-146a in ALS Cortical Astrocytes Reverts Cell Aberrancies and Prevents<br>Paracrine Pathogenicity on Microglia and Motor Neurons. Frontiers in Cell and Developmental<br>Biology, 2021, 9, 634355. | 1.8  | 26        |
| 5  | MO1046DOPING POLYSULFONE DIALYSIS MEMBRANES WITH HUMAN NEUTROPHIL ELASTASE INHIBITORS - A PILOT STUDY. Nephrology Dialysis Transplantation, 2021, 36, .                                                                    | 0.4  | 0         |
| 6  | Discovery of a Necroptosis Inhibitor Improving Dopaminergic Neuronal Loss after MPTP Exposure in<br>Mice. International Journal of Molecular Sciences, 2021, 22, 5289.                                                     | 1.8  | 8         |
| 7  | Biological Evaluation and Mechanistic Studies of Quinolin-(1 H )-Imines as a New Chemotype against<br>Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0151320.                                            | 1.4  | 1         |
| 8  | Augmenting Adaptive Machine Learning with Kinetic Modeling for Reaction Optimization. Journal of Organic Chemistry, 2021, 86, 14192-14198.                                                                                 | 1.7  | 9         |
| 9  | Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.                                                                                                          | 13.8 | 439       |
| 10 | Metabolism of N-ethylhexedrone and buphedrone: An in vivo study in mice using HPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1159, 122340.                    | 1.2  | 7         |
| 11 | Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. International Journal of Molecular Sciences, 2020, 21, 8854.                                  | 1.8  | 9         |
| 12 | Half-Sandwich Cyclopentadienylruthenium(II) Complexes: A New Antimalarial Chemotype. Inorganic<br>Chemistry, 2020, 59, 12722-12732.                                                                                        | 1.9  | 7         |
| 13 | 3-Oxo-β-sultam as a Sulfonylating Chemotype for Inhibition of Serine Hydrolases and Activity-Based<br>Protein Profiling. ACS Chemical Biology, 2020, 15, 878-883.                                                          | 1.6  | 11        |
| 14 | Phenotypic high-throughput screening platform identifies novel chemotypes for necroptosis inhibition. Cell Death Discovery, 2020, 6, 6.                                                                                    | 2.0  | 13        |
| 15 | Azaaurones as Potent Antimycobacterial Agents Active against MDR―and XDRâ€TB. ChemMedChem, 2019,<br>14, 1537-1546.                                                                                                         | 1.6  | 19        |
| 16 | Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease. Future<br>Medicinal Chemistry, 2019, 11, 1953-1977.                                                                               | 1.1  | 16        |
| 17 | Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry, 2019, 3, 589-604.                                                                                                                 | 13.8 | 173       |
| 18 | Phenotypic Effects of Wild-Type and Mutant SOD1 Expression in N9 Murine Microglia at Steady State,<br>Inflammatory and Immunomodulatory Conditions. Frontiers in Cellular Neuroscience, 2019, 13, 109.                     | 1.8  | 36        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Targeting gliomas with triazene-based hybrids: Structure-activity relationship, mechanistic study and stability. European Journal of Medicinal Chemistry, 2019, 172, 16-25.                   | 2.6 | 6         |
| 20 | Bioactive Quinolactacins and Structurally Related Pyrroloquinolones. Studies in Natural Products Chemistry, 2019, , 433-453.                                                                  | 0.8 | 3         |
| 21 | An Overview of Drug Resistance in Protozoal Diseases. International Journal of Molecular Sciences, 2019, 20, 5748.                                                                            | 1.8 | 109       |
| 22 | Design of Modular Gâ€quadruplex Ligands. ChemMedChem, 2018, 13, 869-893.                                                                                                                      | 1.6 | 97        |
| 23 | Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. European Journal of<br>Medicinal Chemistry, 2018, 150, 525-545.                                                | 2.6 | 92        |
| 24 | Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. European Journal of Medicinal Chemistry, 2018, 149, 69-78.                         | 2.6 | 30        |
| 25 | Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 1-11.       | 2.0 | 38        |
| 26 | Diazaborines as New Inhibitors of Human Neutrophil Elastase. ACS Omega, 2018, 3, 7418-7423.                                                                                                   | 1.6 | 38        |
| 27 | Spirotriazoline oxindoles: A novel chemical scaffold with inÂvitro anticancer properties. European<br>Journal of Medicinal Chemistry, 2017, 140, 494-509.                                     | 2.6 | 27        |
| 28 | Dipeptidyl Vinyl Sulfone as a Novel Chemical Tool to Inhibit HMGB1/NLRP3-Inflammasome and<br>Inflamma-miRs in Aβ-Mediated Microglial Inflammation. ACS Chemical Neuroscience, 2017, 8, 89-99. | 1.7 | 38        |
| 29 | Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference?. ACS Chemical<br>Neuroscience, 2017, 8, 50-59.                                                                     | 1.7 | 16        |
| 30 | Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals, 2016, 9, 25.                                                                                                              | 1.7 | 28        |
| 31 | Clickable 4â€Oxoâ€Î²â€lactamâ€Based Selective Probing for Human Neutrophil Elastase Related Proteomes.<br>ChemMedChem, 2016, 11, 2037-2042.                                                   | 1.6 | 24        |
| 32 | Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites.<br>ChemMedChem, 2016, 11, 2194-2204.                                                         | 1.6 | 23        |
| 33 | Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2016, 24, 1786-1792.                                                                 | 1.4 | 17        |
| 34 | Spirooxadiazoline oxindoles with promising <i>in vitro</i> antitumor activities. MedChemComm, 2016, 7, 420-425.                                                                               | 3.5 | 24        |
| 35 | The Cytotoxic Bile Acid DCA Modulates Apoptotic Signalling through Alteration of Mitochondrial<br>Membrane Properties. Biophysical Journal, 2015, 108, 242a.                                  | 0.2 | 1         |
| 36 | Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking. Acta<br>Crystallographica Section F, Structural Biology Communications, 2015, 71, 1346-1351.           | 0.4 | 7         |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enantiopure Indolizinoindolones with in vitro Activity against Blood―and Liverâ€Stage Malaria<br>Parasites. ChemMedChem, 2015, 10, 2080-2089.                                                   | 1.6 | 30        |
| 38 | 1.2 Designing Covalent Inhibitors: A Medicinal Chemistry Challenge. , 2015, , 44-60.                                                                                                            |     | 2         |
| 39 | A unified approach toward the rational design of selective low nanomolar human neutrophil elastase<br>inhibitors. RSC Advances, 2015, 5, 51717-51721.                                           | 1.7 | 4         |
| 40 | Discovery of C-shaped aurone human neutrophil elastase inhibitors. MedChemComm, 2015, 6, 1508-1512.                                                                                             | 3.5 | 3         |
| 41 | N10,N11-di-alkylamine indolo[3,2-b]quinolines as hemozoin inhibitors: Design, synthesis and antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2015, 23, 1530-1539.                   | 1.4 | 15        |
| 42 | Activity-based probes as molecular tools for biomarker discovery. MedChemComm, 2015, 6, 536-546.                                                                                                | 3.5 | 8         |
| 43 | Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. European Journal of Medicinal Chemistry, 2015, 102, 320-333.                                               | 2.6 | 31        |
| 44 | From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorganic and Medicinal<br>Chemistry, 2015, 23, 5120-5130.                                                            | 1.4 | 38        |
| 45 | KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines.<br>Scientific Reports, 2015, 5, 9696.                                                      | 1.6 | 74        |
| 46 | Targeting the Erythrocytic and Liver Stages of Malaria Parasites with <i>s</i> â€Triazineâ€Based Hybrids.<br>ChemMedChem, 2015, 10, 883-890.                                                    | 1.6 | 10        |
| 47 | Indolo[3,2â€ <i>c</i> ]quinoline Gâ€Quadruplex Stabilizers: a Structural Analysis of Binding to the Human<br>Telomeric Gâ€Quadruplex. ChemMedChem, 2015, 10, 836-849.                           | 1.6 | 24        |
| 48 | Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane<br>properties. Journal of Lipid Research, 2015, 56, 2158-2171.                                        | 2.0 | 36        |
| 49 | Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline<br>Tri-Alkylamine Derivatives. PLoS ONE, 2015, 10, e0126891.                                            | 1.1 | 41        |
| 50 | Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial<br>activity. European Journal of Medicinal Chemistry, 2014, 80, 523-534.                          | 2.6 | 64        |
| 51 | Tetraoxane–Pyrimidine Nitrile Hybrids as Dual Stage Antimalarials. Journal of Medicinal Chemistry,<br>2014, 57, 4916-4923.                                                                      | 2.9 | 43        |
| 52 | Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Bioorganic and<br>Medicinal Chemistry, 2014, 22, 577-584.                                                          | 1.4 | 56        |
| 53 | Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon-4( <i>1H</i> )-Imine Derivatives.<br>Journal of the American Society for Mass Spectrometry, 2014, 25, 1650-1661.         | 1.2 | 2         |
| 54 | Bis-alkylamine Indolo[3,2- <i>b</i> ]quinolines as Hemozoin Ligands: Implications for Antimalarial<br>Cytostatic and Cytocidal Activities. Journal of Medicinal Chemistry, 2014, 57, 3295-3313. | 2.9 | 20        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analytical profiles of "legal highs―containing cathinones available in the area of Lisbon, Portugal.<br>Forensic Science International, 2014, 244, 102-110.                                                                              | 1.3 | 16        |
| 56 | Novel Endoperoxide-Based Transmission-Blocking Antimalarials with Liver- and Blood-Schizontocidal Activities. ACS Medicinal Chemistry Letters, 2014, 5, 108-112.                                                                         | 1.3 | 40        |
| 57 | P116 INTERACTION OF APOPTOTIC AND CYTOPROTECTIVE BILE ACIDS WITH BIOMEMBRANES. Journal of Hepatology, 2014, 60, S105.                                                                                                                    | 1.8 | Ο         |
| 58 | Targeting COPD: advances on lowâ€nolecularâ€weight inhibitors of human neutrophil elastase.<br>Medicinal Research Reviews, 2013, 33, E73-101.                                                                                            | 5.0 | 84        |
| 59 | Exploring the Molecular Basis of Q <sub>o</sub> <i>bc</i> <sub>1</sub> Complex Inhibitors Activity to<br>Find Novel Antimalarials Hits. Molecular Informatics, 2013, 32, 659-670.                                                        | 1.4 | 11        |
| 60 | An Endoperoxideâ€Based Hybrid Approach to Deliver Falcipain Inhibitors Inside Malaria Parasites.<br>ChemMedChem, 2013, 8, 1528-1536.                                                                                                     | 1.6 | 32        |
| 61 | Synthesis, Gâ€Quadruplex Stabilisation, Docking Studies, and Effect on Cancer Cells of<br>Indolo[3,2â€ <i>b</i> ]quinolines with One, Two, or Three Basic Side Chains. ChemMedChem, 2013, 8,<br>1648-1661.                               | 1.6 | 39        |
| 62 | Novel anti-Plasmodial hits identified by virtual screening of the ZINC database. Journal of<br>Computer-Aided Molecular Design, 2013, 27, 859-871.                                                                                       | 1.3 | 18        |
| 63 | Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. European Journal of<br>Medicinal Chemistry, 2013, 69, 365-372.                                                                                             | 2.6 | 21        |
| 64 | Structural Optimization of Quinolon-4(1 <i>H</i> )-imines as Dual-Stage Antimalarials: Toward<br>Increased Potency and Metabolic Stability. Journal of Medicinal Chemistry, 2013, 56, 7679-7690.                                         | 2.9 | 14        |
| 65 | The Apoptotic Bile Acid DCA has Preference for Association to Liquid Disordered Lipid Domains and<br>Inhibits the Rigidifying Effect of Cholesterol in Membranes. Biophysical Journal, 2013, 104, 586a.                                  | 0.2 | 0         |
| 66 | Synthetic Condensed 1,4-naphthoquinone Derivative Shifts Neural Stem Cell Differentiation by<br>Regulating Redox State. Molecular Neurobiology, 2013, 47, 313-324.                                                                       | 1.9 | 21        |
| 67 | Five-membered iminocyclitol α-glucosidase inhibitors: Synthetic, biological screening and in silico<br>studies. Bioorganic and Medicinal Chemistry, 2013, 21, 1911-1917.                                                                 | 1.4 | 51        |
| 68 | Quinolin-4(1 <i>H</i> )-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria.<br>Journal of Medicinal Chemistry, 2013, 56, 4811-4815.                                                                             | 2.9 | 21        |
| 69 | Discovery of new heterocycles with activity against human neutrophile elastase based on a boron promoted one-pot assembly reaction. Organic and Biomolecular Chemistry, 2013, 11, 4465.                                                  | 1.5 | 31        |
| 70 | Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in<br>model membranes at physiologically active concentrations. Biochimica Et Biophysica Acta -<br>Biomembranes, 2013, 1828, 2152-2163. | 1.4 | 36        |
| 71 | Optimization of <i>O</i> <sub>3</sub> -Acyl Kojic Acid Derivatives as Potent and Selective Human<br>Neutrophil Elastase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 9802-9806.                                                 | 2.9 | 26        |
| 72 | Flavones as isosteres of 4(1H)-quinolones: Discovery of ligand efficient and dual stage antimalarial<br>lead compounds. European Journal of Medicinal Chemistry, 2013, 69, 872-880.                                                      | 2.6 | 13        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Torins are potent antimalarials that block replenishment of <i>Plasmodium</i> liver stage<br>parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, E2838-47. | 3.3 | 73        |
| 74 | Novel Potent Metallocenes against Liver Stage Malaria. Antimicrobial Agents and Chemotherapy, 2012,<br>56, 1564-1570.                                                                                                                            | 1.4 | 32        |
| 75 | Comparative Analysis of In Vitro Rat Liver Metabolism of the Antimalarial Primaquine and a Derived<br>Imidazoquine. Drug Metabolism Letters, 2012, 6, 15-25.                                                                                     | 0.5 | 4         |
| 76 | Drug Screen Targeted at Plasmodium Liver Stages Identifies a Potent Multistage Antimalarial Drug.<br>Journal of Infectious Diseases, 2012, 205, 1278-1286.                                                                                       | 1.9 | 97        |
| 77 | Four-Component Assembly of Chiral N–B Heterocycles with a Natural Product-Like Framework.<br>Organic Letters, 2012, 14, 988-991.                                                                                                                 | 2.4 | 22        |
| 78 | Antitrypanosomal and cysteine protease inhibitory activities of alkyldiamine cryptolepine derivatives.<br>Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6256-6260.                                                                       | 1.0 | 13        |
| 79 | Targeting the Liver Stage of Malaria Parasites: A Yet Unmet Goal. Journal of Medicinal Chemistry, 2012, 55, 995-1012.                                                                                                                            | 2.9 | 73        |
| 80 | Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine analog. Phytomedicine, 2012, 20, 71-76.                                                                                      | 2.3 | 51        |
| 81 | Peptidomimetic and Organometallic Derivatives of Primaquine Active against Leishmania infantum.<br>Antimicrobial Agents and Chemotherapy, 2012, 56, 5774-5781.                                                                                   | 1.4 | 30        |
| 82 | Structure based virtual screening for discovery of novel human neutrophil elastase inhibitors.<br>MedChemComm, 2012, 3, 1299.                                                                                                                    | 3.5 | 15        |
| 83 | Squaric acid: a valuable scaffold for developing antimalarials?. MedChemComm, 2012, 3, 489.                                                                                                                                                      | 3.5 | 34        |
| 84 | Microwave-Assisted Wittig Reaction of Semistabilized Nitro-Substituted Benzyltriphenyl-Phosphorous<br>Ylides with Aldehydes in Phase-Transfer Conditions. Synthetic Communications, 2012, 42, 747-755.                                           | 1.1 | 5         |
| 85 | <sup>1</sup> H NMR spectroscopic identification of protonable sites in cryptolepines with Câ€11<br>substituents containing two amino functionalities. Magnetic Resonance in Chemistry, 2012, 50, 216-220.                                        | 1.1 | 5         |
| 86 | A carbamate-based approach to primaquine prodrugs: Antimalarial activity, chemical stability and enzymatic activation. Bioorganic and Medicinal Chemistry, 2012, 20, 886-892.                                                                    | 1.4 | 23        |
| 87 | N-Acyl and N-sulfonyloxazolidine-2,4-diones are pseudo-irreversible inhibitors of serine proteases.<br>Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3993-3997.                                                                          | 1.0 | 12        |
| 88 | Efficient synthesis of spiroisoxazoline oxindoles. Tetrahedron Letters, 2012, 53, 281-284.                                                                                                                                                       | 0.7 | 31        |
| 89 | Characterizing the Dynamics and Ligand-Specific Interactions in the Human Leukocyte Elastase<br>through Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2011, 51,<br>1690-1702.                                    | 2.5 | 8         |
| 90 | Incorporation of Basic Side Chains into Cryptolepine Scaffold: Structureâ^'Antimalarial Activity<br>Relationships and Mechanistic Studies. Journal of Medicinal Chemistry, 2011, 54, 734-750.                                                    | 2.9 | 57        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identification of new antimalarial leads by use of virtual screening against cytochrome bc1.<br>Bioorganic and Medicinal Chemistry, 2011, 19, 6302-6308.                                                                            | 1.4 | 10        |
| 92  | Aza vinyl sulfones: Synthesis and evaluation as antiplasmodial agents. Bioorganic and Medicinal Chemistry, 2011, 19, 7635-7642.                                                                                                     | 1.4 | 24        |
| 93  | A quantum mechanical study of novel potential inhibitors of cytochrome <i>bc</i> <sub>1</sub> as antimalarial compounds. International Journal of Quantum Chemistry, 2011, 111, 1196-1207.                                          | 1.0 | 16        |
| 94  | Design, synthesis and evaluation of 3-methylene-substituted indolinones as antimalarials. European<br>Journal of Medicinal Chemistry, 2011, 46, 927-933.                                                                            | 2.6 | 33        |
| 95  | Aspartic vinyl sulfones: Inhibitors of a caspase-3-dependent pathway. European Journal of Medicinal<br>Chemistry, 2011, 46, 2141-2146.                                                                                              | 2.6 | 25        |
| 96  | New hope in the fight against malaria?. Future Medicinal Chemistry, 2011, 3, 1-3.                                                                                                                                                   | 1.1 | 31        |
| 97  | Design and Evaluation of Primaquine-Artemisinin Hybrids as a Multistage Antimalarial Strategy.<br>Antimicrobial Agents and Chemotherapy, 2011, 55, 4698-4706.                                                                       | 1.4 | 65        |
| 98  | Synthesis, stability, biochemical and pharmacokinetic properties of a new potent and selective<br>4-oxo-β-lactam inhibitor of human leukocyte elastase. Journal of Enzyme Inhibition and Medicinal<br>Chemistry, 2011, 26, 169-175. | 2.5 | 9         |
| 99  | Synthesis and evaluation of vinyl sulfones as caspase-3 inhibitors. AÂstructure–activity study.<br>European Journal of Medicinal Chemistry, 2010, 45, 3858-3863.                                                                    | 2.6 | 34        |
| 100 | Effect of Synthesized Inhibitors on Babesipain-1, a New Cysteine Protease from the Bovine Piroplasm<br>Babesia Bigemina. Transboundary and Emerging Diseases, 2010, 57, 68-69.                                                      | 1.3 | 9         |
| 101 | Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal<br>activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorganic and Medicinal Chemistry Letters, 2010, 20,<br>193-195.                    | 1.0 | 94        |
| 102 | Bis-alkylamine quindolone derivatives as new antimalarial leads. Bioorganic and Medicinal Chemistry<br>Letters, 2010, 20, 5634-5637.                                                                                                | 1.0 | 22        |
| 103 | C-11 diamino cryptolepine derivatives NSC748392, NSC748393, and NSC748394: Anticancer profile and G-quadruplex stabilization. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7042-7045.                                      | 1.0 | 26        |
| 104 | Inhibitors of the Mitochondrial Electron Transport Chain and de novo Pyrimidine Biosynthesis as<br>Antimalarials: The Present Status. Current Medicinal Chemistry, 2010, 17, 929-956.                                               | 1.2 | 43        |
| 105 | Cell Death Targets and Potential Modulators in Alzheimers Disease. Current Pharmaceutical Design, 2010, 16, 2851-2864.                                                                                                              | 0.9 | 36        |
| 106 | 4-Oxo-β-lactams (Azetidine-2,4-diones) Are Potent and Selective Inhibitors of Human Leukocyte Elastase.<br>Journal of Medicinal Chemistry, 2010, 53, 241-253.                                                                       | 2.9 | 43        |
| 107 | Endoperoxide Carbonyl Falcipain 2/3 Inhibitor Hybrids: Toward Combination Chemotherapy of Malaria<br>through a Single Chemical Entity. Journal of Medicinal Chemistry, 2010, 53, 8202-8206.                                         | 2.9 | 35        |
| 108 | Indoloquinolines as Scaffolds for Drug Discovery. Current Medicinal Chemistry, 2010, 17, 2348-2370.                                                                                                                                 | 1.2 | 160       |

| #   | Article                                                                                                                                                                                                                               | IF                  | CITATIONS        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| 109 | PRIMACENES: novel non-cytotoxic primaquine-ferrocene conjugates with anti-Pneumocystis carinii activity. MedChemComm, 2010, 1, 199.                                                                                                   | 3.5                 | 25               |
| 110 | Naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates: Potent, non-cytotoxic, antiapoptotic agents.<br>Chemico-Biological Interactions, 2009, 180, 175-182.                                                                                | 1.7                 | 10               |
| 111 | Dopamine- and tyramine-based derivatives of triazenes: Activation by tyrosinase and implications for prodrug design. European Journal of Medicinal Chemistry, 2009, 44, 3228-3234.                                                    | 2.6                 | 18               |
| 112 | Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6914-6917.                                                                     | 1.0                 | 17               |
| 113 | Structure–activity relationships for dipeptide prodrugs of acyclovir: Implications for prodrug design. European Journal of Medicinal Chemistry, 2009, 44, 2339-2346.                                                                  | 2.6                 | 24               |
| 114 | Primaquine revisited six decades after its discovery. European Journal of Medicinal Chemistry, 2009, 44, 937-953.                                                                                                                     | 2.6                 | 300              |
| 115 | Primaquine dipeptide derivatives bearing an imidazolidin-4-one moiety at the N-terminus as potential antimalarial prodrugs. European Journal of Medicinal Chemistry, 2009, 44, 2506-2516.                                             | 2.6                 | 27               |
| 116 | Artemisinin-dipeptidyl vinyl sulfone hybrid molecules: Design, synthesis and preliminary SAR for<br>antiplasmodial activity and falcipain-2 inhibition. Bioorganic and Medicinal Chemistry Letters, 2009, 19,<br>3229-3232.           | 1.0                 | 49               |
| 117 | Design, synthesis and structure–activity relationships of (1H-pyridin-4-ylidene)amines as potential<br>antimalarials. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3476-3480.                                                | 1.0                 | 29               |
| 118 | Imidazoquines as Antimalarial and Antipneumocystis Agents. Journal of Medicinal Chemistry, 2009, 52, 7800-7807.                                                                                                                       | 2.9                 | 35               |
| 119 | Electrospray Ionization Mass Spectrometry as a Valuable Tool in the Characterization of Novel<br>Primaquine Peptidomimetic Derivatives. European Journal of Mass Spectrometry, 2009, 15, 627-640.                                     | 0.5                 | 5                |
| 120 | Bis{( <i>E</i> )-3-[(diethylmethylammonio)methyl]- <i>N</i> -[3-( <i>N</i> , <i>N</i> -dimethylsulfamoyl)-1-methylpy<br>tetraiodide pentahydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65,<br>o283-o284. | ridin-4-ylid<br>0.2 | ene]-4-meth<br>4 |
| 121 | Electrospray ionization-ion trap mass spectrometry study of PQAAPro and PQProAA mimetic derivatives of the antimalarial primaquine. Journal of the American Society for Mass Spectrometry, 2008, 19, 1476-1490.                       | 1.2                 | 8                |
| 122 | Dipeptide Derivatives of AZT: Synthesis, Chemical Stability, Activation in Human Plasma, hPEPT1 Affinity, and Antiviral Activity. ChemMedChem, 2008, 3, 970-978.                                                                      | 1.6                 | 18               |
| 123 | Unanticipated Acyloxymethylation of Sumatriptan Indole Nitrogen Atom and its Implications in Prodrug Design. Archiv Der Pharmazie, 2008, 341, 344-350.                                                                                | 2.1                 | 2                |
| 124 | Anti-Pneumocystis carinii and antiplasmodial activities of primaquine-derived imidazolidin-4-ones.<br>Bioorganic and Medicinal Chemistry Letters, 2008, 18, 485-488.                                                                  | 1.0                 | 29               |
| 125 | Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: Synthesis, antiplasmodial activity, and cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1378-1381.                                        | 1.0                 | 45               |
| 126 | Amino acids as selective acylating agents: regioselective N1-acylation of imidazolidin-4-one derivatives of the antimalarial drug primaquine. Tetrahedron, 2008, 64, 11144-11149.                                                     | 1.0                 | 12               |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Imidazolidin-4-one peptidomimetic derivatives of primaquine: Synthesis and antimalarial activity.<br>Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4150-4153.                                                            | 1.0 | 31        |
| 128 | Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry. International Journal of Mass Spectrometry, 2008, 270, 81-93.                               | 0.7 | 10        |
| 129 | Azetidine-2,4-diones (4-Oxo-β-lactams) as Scaffolds for Designing Elastase Inhibitors. Journal of<br>Medicinal Chemistry, 2008, 51, 1783-1790.                                                                                   | 2.9 | 31        |
| 130 | Malaria Combination Therapies: Advantages and Shortcomings. Mini-Reviews in Medicinal Chemistry, 2008, 8, 201-212.                                                                                                               | 1.1 | 37        |
| 131 | Crystallization and Preliminary Diffraction Studies of Porcine Pancreatic Elastase in Complex with a Novel Inhibitor. Protein and Peptide Letters, 2007, 14, 93-95.                                                              | 0.4 | 5         |
| 132 | Michael Acceptors as Cysteine Protease Inhibitors. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1040-1050.                                                                                                                      | 1.1 | 130       |
| 133 | The efficiency of C-4 substituents in activating the β-lactam scaffold towards serine proteases and hydroxide ion. Organic and Biomolecular Chemistry, 2007, 5, 2617.                                                            | 1.5 | 18        |
| 134 | Unanticipated Stereoselectivity in the Reaction of Primaquine α-Aminoamides with Substituted<br>Benzaldehydes:  A Computational and Experimental Study. Journal of Organic Chemistry, 2007, 72,<br>4189-4197.                    | 1.7 | 22        |
| 135 | Cyclization-activated Prodrugs. Molecules, 2007, 12, 2484-2506.                                                                                                                                                                  | 1.7 | 50        |
| 136 | Aminocarbonyloxymethyl Ester Prodrugs of Flufenamic Acid and Diclofenac: Suppressing the<br>Rearrangement Pathway in Aqueous Media. Archiv Der Pharmazie, 2007, 340, 32-40.                                                      | 2.1 | 17        |
| 137 | The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Bioorganic and<br>Medicinal Chemistry, 2007, 15, 5340-5350.                                                                                       | 1.4 | 33        |
| 138 | The Bsmoc group as a novel scaffold for the design of irreversible inhibitors of cysteine proteases.<br>Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2738-2741.                                                         | 1.0 | 9         |
| 139 | Dipeptide vinyl sultams: Synthesis via the Wittig–Horner reaction and activity against papain,<br>falcipain-2 and Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4115-4119.                        | 1.0 | 66        |
| 140 | Reactivity of imidazolidin-4-one derivatives of primaquine: implications for prodrug design.<br>Tetrahedron, 2006, 62, 9883-9891.                                                                                                | 1.0 | 28        |
| 141 | Cyclization-activated prodrugs. Synthesis, reactivity and toxicity of dipeptide esters of paracetamol.<br>Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1595-1598.                                                       | 1.0 | 32        |
| 142 | Amidomethylation of Amodiaquine: Antimalarial N-Mannich Base Derivatives ChemInform, 2005, 36, no.                                                                                                                               | 0.1 | 0         |
| 143 | Design, Synthesis, and Enzymatic Evaluation ofN1-Acyloxyalkyl-<br>andN1-Oxazolidin-2,4-dion-5-yl-Substituted Î2-lactams as Novel Inhibitors of Human Leukocyte Elastase.<br>Journal of Medicinal Chemistry, 2005, 48, 4861-4870. | 2.9 | 33        |
| 144 | Imidazolidin-4-one Derivatives of Primaquine as Novel Transmission-Blocking Antimalarials. Journal of<br>Medicinal Chemistry, 2005, 48, 888-892.                                                                                 | 2.9 | 78        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis of imidazolidin-4-one and 1H-imidazo[2,1-a]isoindole-2,5(3H,9bH)-dione derivatives of primaquine: scope and limitations. Tetrahedron, 2004, 60, 5551-5562.                                                                                                 | 1.0 | 68        |
| 146 | Synthesis of Imidazolidin-4-one and 1H-Imidazo[2,1-a]isoindole-2,5(3H,9bH)-dione Derivatives of<br>Primaquine: Scope and Limitations ChemInform, 2004, 35, no.                                                                                                       | 0.1 | 0         |
| 147 | Amidomethylation of amodiaquine: antimalarial N-Mannich base derivatives. Tetrahedron Letters, 2004,<br>45, 7663-7666.                                                                                                                                               | 0.7 | 49        |
| 148 | Kinetics and Mechanism of Hydrolysis ofN-Acyloxymethyl Derivatives of Azetidin-2-one. Journal of Organic Chemistry, 2004, 69, 3359-3367.                                                                                                                             | 1.7 | 17        |
| 149 | Novel 3+1 mixed-ligand Technetium-99m complexes carrying dipeptides as monodentate ligands. Nuclear<br>Medicine and Biology, 2004, 31, 139-146.                                                                                                                      | 0.3 | 3         |
| 150 | Amino acids as selective sulfonamide acylating agents. Tetrahedron, 2003, 59, 7473-7480.                                                                                                                                                                             | 1.0 | 11        |
| 151 | Improved Synthesis of Amino Acid and Dipeptide Chloromethyl Esters Using Bromochloromethane.<br>Synthetic Communications, 2003, 33, 1683-1693.                                                                                                                       | 1.1 | 9         |
| 152 | Synthesis, Stability and In Vitro Dermal Evaluation of Aminocarbonyloxymethyl Esters as Prodrugs of<br>Carboxylic Acid Agents. Bioorganic and Medicinal Chemistry, 2002, 10, 809-816.                                                                                | 1.4 | 17        |
| 153 | Kinetics and mechanism of hydrolysis of N-amidomethylsulfonamides. Perkin Transactions II RSC, 2001, , 749-753.                                                                                                                                                      | 1.1 | 11        |
| 154 | Design, Synthesis and Stability of N-Acyloxymethyl- and N-Aminocarbonyloxymethyl-2-azetidinones as<br>Human Leukocyte Elastase Inhibitors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1065-1068.                                                          | 1.0 | 52        |
| 155 | Acyloxymethyl as a drug protecting group. Part 6. Bioorganic and Medicinal Chemistry, 2000, 8, 707-716.                                                                                                                                                              | 1.4 | 19        |
| 156 | Acyloxymethyl as a drug protecting group. Part 7: Tertiary sulfonamidomethyl ester prodrugs of<br>benzylpenicillin: chemical hydrolysis and anti-bacterial activity. Bioorganic and Medicinal Chemistry,<br>2000, 8, 1629-1636.                                      | 1.4 | 5         |
| 157 | Dipeptide derivatives of primaquine as transmission-blocking antimalarials: effect of aliphatic side-chain acylation on the gametocytocidal activity and on the formation of carboxyprimaquine in rat liver homogenates. Pharmaceutical Research, 1999, 16, 949-955. | 1.7 | 34        |
| 158 | Cleavage of tertiary amidomethyl ester prodrugs of carboxylic acids by rat liver homogenates.<br>European Journal of Pharmaceutical Sciences, 1999, 9, 201-205.                                                                                                      | 1.9 | 7         |
| 159 | Metabolism of primaquine by liver homogenate fractions. Experimental and Toxicologic Pathology, 1999, 51, 299-303.                                                                                                                                                   | 2.1 | 83        |
| 160 | Acyloxymethyl as a drug protecting group. Part 5.1 Kinetics and mechanism of the hydrolysis of<br>tertiary N-acyloxymethylsulfonamides. Journal of the Chemical Society Perkin Transactions II, 1999, ,<br>431-440.                                                  | 0.9 | 10        |
| 161 | Phthalimidomethyl as a drug Pro-moiety. Probing its reactivity. Bioorganic and Medicinal Chemistry<br>Letters, 1998, 8, 955-958.                                                                                                                                     | 1.0 | 7         |
| 162 | Acyloxymethyl as a drug protecting group: Part 4. The hydrolysis of tertiary amidomethyl ester prodrugs of carboxylic acid agents. Pharmaceutical Research, 1997, 14, 1634-1639.                                                                                     | 1.7 | 32        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Acyloxymethyl as a drug protecting group. Part 3. Tertiary O-amidomethyl esters of penicillin G:<br>chemical hydrolysis and anti-bacterial activity. Pharmaceutical Research, 1996, 13, 70-75.                                                    | 1.7 | 17        |
| 164 | Acyloxymethyl as a drug protecting group. Synthesis and reactivity of N-acyloxymethylsulfonamide prodrugs. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 937-940.                                                                          | 1.0 | 7         |
| 165 | A new direct synthesis of tertiary N-acyloxymethylamide prodrugs of carboxylic acid drugs.<br>Tetrahedron Letters, 1994, 35, 7107-7110.                                                                                                           | 0.7 | 21        |
| 166 | Triazene drug metabolites. Part 11. Synthesis of S-cysteinyl and related derivatives of<br>N-hydroxymethyltriazenes. Journal of the Chemical Society Perkin Transactions 1, 1991, , 3241.                                                         | 0.9 | 5         |
| 167 | Triazene drug metabolites. Part 10. Metal-ion catalysed decomposition of monoalkyltriazenes in ethanol solutions. Journal of the Chemical Society Perkin Transactions II, 1991, , 81.                                                             | 0.9 | 6         |
| 168 | Acyloxymethyl as a drug protecting group. Kinetics and mechanism of the hydrolysis of<br>N-acyloxymethylbenzamides. Journal of the Chemical Society Perkin Transactions II, 1991, , 563.                                                          | 0.9 | 20        |
| 169 | Synthesis of S-cysteinyl, S(N-acetylcysteinyl) and S-glutathionyl conjugates op<br>N-hydroxymethyltriazenes. Tetrahedron Letters, 1988, 29, 2707-2710.                                                                                            | 0.7 | 6         |
| 170 | Triazene drug metabolites. Part 4. Kinetics and mechanism of the decomposition of<br>1-aryl-3-benzoyloxymethyl-3-methyltriazenes in mixed aqueous–organic solvents. Journal of the<br>Chemical Society Perkin Transactions II, 1987, , 1503-1508. | 0.9 | 8         |
| 171 | Alkylating Agents. , 0, , 133-158.                                                                                                                                                                                                                |     | 11        |
| 172 | Contribution of Mass Spectrometry to the Study of Antimalarial Agents. , 0, , .                                                                                                                                                                   |     | 2         |

Contribution of Mass Spectrometry to the Study of Antimalarial Agents. , 0, , . 172