George A Porter Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003500.	1.6	8
2	Neither cardiac mitochondrial DNA variation nor copy number contribute to congenital heart disease risk. American Journal of Human Genetics, 2022, 109, 961-966.	2.6	5
3	Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell, 2022, 29, 840-855.e7.	5.2	18
4	Genetic Basis of Left Ventricular Noncompaction. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003517.	1.6	23
5	A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nature Communications, 2022, 13, 2403.	5.8	13
6	Association of Damaging Variants in Genes With Increased Cancer Risk Among Patients With Congenital Heart Disease. JAMA Cardiology, 2021, 6, 457.	3.0	34
7	Native Gel Electrophoresis and Immunoblotting to Analyze Electron Transport Chain Complexes. Methods in Molecular Biology, 2021, 2276, 103-112.	0.4	5
8	Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight, 2021, 6, .	2.3	16
9	Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency. Circulation Research, 2021, 128, 1156-1169.	2.0	27
10	Systems Analysis Implicates WAVE2ÂComplex in the Pathogenesis ofÂDevelopmental Left-Sided ObstructiveÂHeart Defects. JACC Basic To Translational Science, 2020, 5, 376-386.	1.9	15
11	Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 2020, 52, 769-777.	9.4	97
12	De Novo Damaging Variants, Clinical Phenotypes, and Post-Operative Outcomes in Congenital Heart Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002836.	1.6	30
13	EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Medicine, 2020, 12, 42.	3.6	17
14	A 235 Kb deletion at 17q21.33 encompassing the COL1A1 , and two additional secondary copy number variants in an infant with type I osteogenesis imperfecta: A rare case report. Molecular Genetics & Genomic Medicine, 2020, 8, e1241.	0.6	2
15	Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genetics, 2020, 16, e1009189.	1.5	27
16	GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. ELife, 2020, 9, .	2.8	31
17	Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease. Scientific Reports, 2019, 9, 7623.	1.6	59
18	Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Archives of Biochemistry and Biophysics, 2019, 662, 177-189.	1.4	27

#	Article	IF	CITATIONS
19	Reply to â€~Double-outlet right ventricle is not hypoplastic left heart syndrome'. Nature Genetics, 2019, 51, 198-199.	9.4	4
20	Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose–phosphate pathways in embryonic heart. Journal of Biological Chemistry, 2018, 293, 6925-6941.	1.6	13
21	Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules, 2018, 8, 176.	1.8	81
22	Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L846-L859.	1.3	25
23	Neonatal Permeability Transition Pore Closure is Associated with Increased Cardiac Function. Biophysical Journal, 2018, 114, 498a.	0.2	Ο
24	Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. American Journal of Physiology - Renal Physiology, 2018, 315, F1271-F1282.	1.3	18
25	The Congenital Heart Disease Genetic Network Study: Cohort description. PLoS ONE, 2018, 13, e0191319.	1.1	82
26	Physiological roles of the mitochondrial permeability transition pore. Journal of Bioenergetics and Biomembranes, 2017, 49, 13-25.	1.0	86
27	Preventing permeability transition pore opening increases mitochondrial maturation, myocyte differentiation and cardiac function in the neonatal mouse heart. Pediatric Research, 2017, 81, 932-941.	1.1	20
28	The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease. Biological and Medical Physics Series, 2017, , 69-105.	0.3	3
29	The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 2017, 49, 1152-1159.	9.4	177
30	Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601.	9.4	624
31	Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Scientific Reports, 2017, 7, 14488.	1.6	67
32	Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Scientific Reports, 2016, 6, 20999.	1.6	27
33	Cyclophilin D Regulates the Formation of Supercomplexes in Heart Mitochondria. Biophysical Journal, 2016, 110, 309a.	0.2	Ο
34	The Mitochondrial Permeability Transition Pore and ATP Synthase. Handbook of Experimental Pharmacology, 2016, 240, 21-46.	0.9	38
35	Mitochondrial Function during and Regulation of Cardiac Development. Biophysical Journal, 2016, 110, 2a.	0.2	0
36	Permeability Transition Pore Closure Increases Mitochondrial Maturation and Myocyte Differentiation in the Neonatal Heart. Biophysical Journal, 2016, 110, 309a.	0.2	1

George A Porter Jr

#	Article	IF	CITATIONS
37	Environmental Signals. , 2016, , 223-235.		Ο
38	De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 2015, 350, 1262-1266.	6.0	646
39	Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacological Research, 2015, 99, 382-392.	3.1	70
40	Initiation of Electron Transport Chain Activity in the Embryonic Heart Coincides with the Activation of Mitochondrial Complex 1 and the Formation of Supercomplexes. PLoS ONE, 2014, 9, e113330.	1.1	48
41	SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1602-H1609.	1.5	183
42	Bcl-xL in neuroprotection and plasticity. Frontiers in Physiology, 2014, 5, 355.	1.3	40
43	An uncoupling channel within the c-subunit ring of the F ₁ F _O ATP synthase is the mitochondrial permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10580-10585.	3.3	502
44	The C-Subunit of the ATP Synthase Forms the Pore of the PTP. Biophysical Journal, 2014, 106, 3a-4a.	0.2	1
45	Electron Transport Activity in Embryonic Hearts Requires the Formation of Supercomplexes. Biophysical Journal, 2014, 106, 185a-186a.	0.2	0
46	De novo mutations in histone-modifying genes in congenital heart disease. Nature, 2013, 498, 220-223.	13.7	798
47	The Congenital Heart Disease Genetic Network Study. Circulation Research, 2013, 112, 698-706.	2.0	142
48	Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy. Circulation Research, 2012, 111, 1222-1236.	2.0	226
49	Complex I of the Mitochondrial Electron Transport Chain is Dysfunctional in the Early Embryonic Heart. Biophysical Journal, 2011, 100, 462a.	0.2	Ο
50	The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation. Developmental Cell, 2011, 21, 469-478.	3.1	257
51	Bioenergetics, mitochondria, and cardiac myocyte differentiation. Progress in Pediatric Cardiology, 2011, 31, 75-81.	0.2	126
52	Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 913-921.	0.5	110
53	Calcium channels regulate myocardial compaction. Biophysical Journal, 2009, 96, 182a.	0.2	0
54	KAWASAKI DISEASE ASSOCIATED WITH REACTIVE HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS. Pediatric Infectious Disease Journal, 2008, 27, 1116-1118.	1.1	29

George A Porter Jr

#	Article	IF	CITATIONS
55	Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis. Science, 2006, 311, 847-851.	6.0	1,003
56	Right Coronary Artery Arising from the Left Ventricular Outflow Tract: A Rare Congenital Anomaly of the Coronary Arteries. Pediatric Cardiology, 2003, 24, 598-600.	0.6	0
57	Intracellular calcium plays an essential role in cardiac development. Developmental Dynamics, 2003, 227, 280-290.	0.8	42
58	Neuregulin-1 promotes formation of the murine cardiac conduction system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10464-10469.	3.3	220
59	Reduction in Intracellular Calcium Levels Inhibits Myoblast Differentiation. Journal of Biological Chemistry, 2002, 277, 28942-28947.	1.6	122
60	Sinus node dysfunction associated with lithium therapy in a child. Texas Heart Institute Journal, 2002, 29, 200-2.	0.1	17
61	Influences of Adenosine on the Fetus and Newborn. Molecular Genetics and Metabolism, 2001, 74, 160-171.	0.5	90
62	Ontogeny of humoral heart rate regulation in the embryonic mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R401-R407.	0.9	38
63	A 4-year-old girl with right elbow erythema, warmth, and induration. Current Opinion in Pediatrics, 1997, 9, 31-34.	1.0	0
64	Two populations of β-spectrin in rat skeletal muscle. , 1997, 37, 7-19.		27
65	Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. Journal of Cell Biology, 1992, 117, 997-1005.	2.3	218
66	Editorial. Circulation, 1965, 32, 169-171.	1.6	4
67	Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. ELife, 0, 11, .	2.8	9