George A Porter Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528823/publications.pdf

Version: 2024-02-01

67 papers

6,696 citations

172457 29 h-index 57 g-index

75 all docs 75 docs citations

75 times ranked 10958 citing authors

#	Article	IF	CITATIONS
1	Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis. Science, 2006, 311, 847-851.	12.6	1,003
2	De novo mutations in histone-modifying genes in congenital heart disease. Nature, 2013, 498, 220-223.	27.8	798
3	De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 2015, 350, 1262-1266.	12.6	646
4	Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601.	21.4	624
5	An uncoupling channel within the c-subunit ring of the F $<$ sub $>$ 1 $<$ /sub $>$ F $<$ sub $>$ 0 $<$ /sub $>$ ATP synthase is the mitochondrial permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10580-10585.	7.1	502
6	The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation. Developmental Cell, 2011, 21, 469-478.	7.0	257
7	Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy. Circulation Research, 2012, 111, 1222-1236.	4.5	226
8	Neuregulin-1 promotes formation of the murine cardiac conduction system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10464-10469.	7.1	220
9	Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. Journal of Cell Biology, 1992, 117, 997-1005.	5.2	218
10	SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1602-H1609.	3.2	183
11	The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 2017, 49, 1152-1159.	21.4	177
12	The Congenital Heart Disease Genetic Network Study. Circulation Research, 2013, 112, 698-706.	4.5	142
13	Bioenergetics, mitochondria, and cardiac myocyte differentiation. Progress in Pediatric Cardiology, 2011, 31, 75-81.	0.4	126
14	Reduction in Intracellular Calcium Levels Inhibits Myoblast Differentiation. Journal of Biological Chemistry, 2002, 277, 28942-28947.	3.4	122
15	Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 913-921.	1.0	110
16	Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 2020, 52, 769-777.	21.4	97
17	Influences of Adenosine on the Fetus and Newborn. Molecular Genetics and Metabolism, 2001, 74, 160-171.	1.1	90
18	Physiological roles of the mitochondrial permeability transition pore. Journal of Bioenergetics and Biomembranes, 2017, 49, 13-25.	2.3	86

#	Article	IF	CITATIONS
19	The Congenital Heart Disease Genetic Network Study: Cohort description. PLoS ONE, 2018, 13, e0191319.	2.5	82
20	Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules, 2018, 8, 176.	4.0	81
21	Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacological Research, 2015, 99, 382-392.	7.1	70
22	Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Scientific Reports, 2017, 7, 14488.	3.3	67
23	Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease. Scientific Reports, 2019, 9, 7623.	3.3	59
24	Initiation of Electron Transport Chain Activity in the Embryonic Heart Coincides with the Activation of Mitochondrial Complex 1 and the Formation of Supercomplexes. PLoS ONE, 2014, 9, e113330.	2.5	48
25	Intracellular calcium plays an essential role in cardiac development. Developmental Dynamics, 2003, 227, 280-290.	1.8	42
26	Bcl-xL in neuroprotection and plasticity. Frontiers in Physiology, 2014, 5, 355.	2.8	40
27	Ontogeny of humoral heart rate regulation in the embryonic mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R401-R407.	1.8	38
28	The Mitochondrial Permeability Transition Pore and ATP Synthase. Handbook of Experimental Pharmacology, 2016, 240, 21-46.	1.8	38
29	Association of Damaging Variants in Genes With Increased Cancer Risk Among Patients With Congenital Heart Disease. JAMA Cardiology, 2021, 6, 457.	6.1	34
30	GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. ELife, 2020, 9 , .	6.0	31
31	De Novo Damaging Variants, Clinical Phenotypes, and Post-Operative Outcomes in Congenital Heart Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002836.	3.6	30
32	KAWASAKI DISEASE ASSOCIATED WITH REACTIVE HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS. Pediatric Infectious Disease Journal, 2008, 27, 1116-1118.	2.0	29
33	Two populations of \hat{l}^2 -spectrin in rat skeletal muscle. , 1997, 37, 7-19.		27
34	Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Scientific Reports, 2016, 6, 20999.	3.3	27
35	Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Archives of Biochemistry and Biophysics, 2019, 662, 177-189.	3.0	27
36	Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency. Circulation Research, 2021, 128, 1156-1169.	4.5	27

#	Article	IF	Citations
37	Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genetics, 2020, 16, e1009189.	3.5	27
38	Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L846-L859.	2.9	25
39	Genetic Basis of Left Ventricular Noncompaction. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003517.	3.6	23
40	Preventing permeability transition pore opening increases mitochondrial maturation, myocyte differentiation and cardiac function in the neonatal mouse heart. Pediatric Research, 2017, 81, 932-941.	2.3	20
41	Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. American Journal of Physiology - Renal Physiology, 2018, 315, F1271-F1282.	2.7	18
42	Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell, 2022, 29, 840-855.e7.	11.1	18
43	EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Medicine, 2020, 12, 42.	8.2	17
44	Sinus node dysfunction associated with lithium therapy in a child. Texas Heart Institute Journal, 2002, 29, 200-2.	0.3	17
45	Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight, 2021, 6, .	5.0	16
46	Systems Analysis Implicates WAVE2ÂComplex in the Pathogenesis ofÂDevelopmental Left-Sided ObstructiveÂHeart Defects. JACC Basic To Translational Science, 2020, 5, 376-386.	4.1	15
47	Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose–phosphate pathways in embryonic heart. Journal of Biological Chemistry, 2018, 293, 6925-6941.	3.4	13
48	A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nature Communications, 2022, 13, 2403.	12.8	13
49	Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. ELife, 0, 11 , .	6.0	9
50	Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003500.	3.6	8
51	Native Gel Electrophoresis and Immunoblotting to Analyze Electron Transport Chain Complexes. Methods in Molecular Biology, 2021, 2276, 103-112.	0.9	5
52	Neither cardiac mitochondrial DNA variation nor copy number contribute to congenital heart disease risk. American Journal of Human Genetics, 2022, 109, 961-966.	6.2	5
53	Editorial. Circulation, 1965, 32, 169-171.	1.6	4
54	Reply to †Double-outlet right ventricle is not hypoplastic left heart syndrome'. Nature Genetics, 2019, 51, 198-199.	21.4	4

#	Article	IF	Citations
55	The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease. Biological and Medical Physics Series, 2017, , 69-105.	0.4	3
56	A 235 Kb deletion at $17q21.33$ encompassing the COL1A1, and two additional secondary copy number variants in an infant with type I osteogenesis imperfecta: A rare case report. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1241.	1.2	2
57	The C-Subunit of the ATP Synthase Forms the Pore of the PTP. Biophysical Journal, 2014, 106, 3a-4a.	0.5	1
58	Permeability Transition Pore Closure Increases Mitochondrial Maturation and Myocyte Differentiation in the Neonatal Heart. Biophysical Journal, 2016, 110, 309a.	0.5	1
59	A 4-year-old girl with right elbow erythema, warmth, and induration. Current Opinion in Pediatrics, 1997, 9, 31-34.	2.0	0
60	Right Coronary Artery Arising from the Left Ventricular Outflow Tract: A Rare Congenital Anomaly of the Coronary Arteries. Pediatric Cardiology, 2003, 24, 598-600.	1.3	0
61	Calcium channels regulate myocardial compaction. Biophysical Journal, 2009, 96, 182a.	0.5	0
62	Complex I of the Mitochondrial Electron Transport Chain is Dysfunctional in the Early Embryonic Heart. Biophysical Journal, 2011, 100, 462a.	0.5	0
63	Electron Transport Activity in Embryonic Hearts Requires the Formation of Supercomplexes. Biophysical Journal, 2014, 106, 185a-186a.	0.5	0
64	Cyclophilin D Regulates the Formation of Supercomplexes in Heart Mitochondria. Biophysical Journal, 2016, 110, 309a.	0.5	0
65	Mitochondrial Function during and Regulation of Cardiac Development. Biophysical Journal, 2016, 110, 2a.	0.5	0
66	Neonatal Permeability Transition Pore Closure is Associated with Increased Cardiac Function. Biophysical Journal, 2018, 114, 498a.	0.5	0
67	Environmental Signals., 2016,, 223-235.		O