## Debashree Ghosh

## List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7528715/publications.pdf
Version: 2024-02-01

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular
Physics, 2015, 113, 184-215.
2 Orbital optimization in the density matrix renormalization group, with applications to polyenes and $\hat{1}^{2}$-carotene. Journal of Chemical Physics, 2008, 128, 144117.
First-Principle Protocol for Calculating lonization Energies and Redox Potentials of Solvated
$3 \quad$ Molecules and lons: Theory and Application to Aqueous Phenol and Phenolate. Journal of Physical
Chemistry B, 2012, 116, 7269-7280.
$4 \quad$ Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers. Journal of Physical Chemistry A, 2010, 114, 12739-12754.
6 Accelerating convergence in iterative solution for largeâ€scale complete active space selfâ€consistentâ€field calculations. International Journal of Quantum Chemistry, 2009, 109, 2178-2190.
Extension of the Effective Fragment Potential Method to Macromolecules. Journal of Physical
Chemistry B, 2016, 120, 6562-6574.

$8 \quad$| A study of cumulant approximations to n-electron valence multireference perturbation theory. |
| :--- |
| Journal of Chemical Physics, 2009, 130, 194107. |

The nature of selenium hydrogen bonding: gas phase spectroscopy and quantum chemistry
calculations. Physical Chemistry Chemical Physics, 2017, 19, 24179-24187.

Effective fragment potential method in <scp>Qâ€CHEM</scp>: A guide for users and developers. Journal of Computational Chemistry, 2013, 34, 1060-1070.
3.3

| 19 | Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant. Journal of Physical Chemistry B, 2016, 120, 4410-4420. | 2.6 | 21 |
| :---: | :---: | :---: | :---: |
| 20 | Effects of the benzoxazole group on green fluorescent protein chromophore crystal structure and solid state photophysics. Journal of Materials Chemistry C, 2016, 4, 2793-2801. | 5.5 | 21 |
| 21 | Toward Understanding the Redox Properties of Model Chromophores from the Green Fluorescent Protein Family: An Interplay between Conjugation, Resonance Stabilization, and Solvent Effects. Journal of Physical Chemistry B, 2012, 116, 12398-12405. | 2.6 | 20 |
| 22 | Spectroscopic and ab initio investigation of 2,6-difluorophenylacetyleneâ€"amine complexes: coexistence of Cấ $\in^{\prime H} H \hat{a}<-N$ and lone-pairâa-ḯ complexes and intermolecular coulombic decay. Physical Chemistry Chemical Physics, 2015, 17, 434-443. | 2.8 | 14 |
| 23 | Elucidating the Photoprotection Mechanism of Eumelanin Monomers. Journal of Physical Chemistry B, 2017, 121, 5988-5994. | 2.6 | 14 |
| 24 | In the quest for a stable triplet state in small polyaromatic hydrocarbons: an <i>in silico</i> tool for rational design and prediction. Chemical Science, 2019, 10, 9270-9276. | 7.4 | 14 |
| 25 | Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method. Journal of Chemical Physics, 2014, 140, 094101. | 3.0 | 12 |

> Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage. Journal of 26 Physical Chemistry B, 2015, 119, 13288-13293. Physical Chemistry B, 2015, 119, 13288-13293.

Effect of solvation on the ionization of guanine nucleotide: A hybrid QM/EFP study. Journal of
Computational Chemistry, 2017, 38, 2528-2537.

Unprecedented solvent induced inter-conversion between monomeric and dimeric silyleneấ"zinc iodide
27
28
Evolutionary algorithm based configuration interaction approach. International Journal of Quantum
29 Chemistry, 2018, 118, e25509.
$2.0 \quad 11$

Machine learning prediction of interaction energies in rigid water clusters. Physical Chemistry
$30 \quad$ Chemical Physics, 2018, 20, 22987-22996.
2.8

11
Data-driven modeling of S ât' Sl excitation energy in the BODIPY chemical space: High-throughput
computation, quantum machine learning, and inverse design. Journal of Chemical Physics, 2021, 155,
244102 .

32 Ionization-Induced Tautomerization in Cytosine and Effect of Solvation. Journal of Physical Chemistry A, 2014, 118, 5323-5332.
2.5

10
33 An interaction energy driven biased sampling technique: A faster route to ionization spectra in
condensed phase. Journal of Computational Chemistry, 2017, 38, 2248-2257.
3.3

10

Non-radiative decay of an eumelanin monomer: to be or not to be planar. Physical Chemistry Chemical
Physics, 2019, 21, 6635-6642.
Electrostatic Origin of the Red Solvatochromic Shift of DFHBDI in RNA Spinach. Journal of Physical
Chemistry B, 2017, 121, 4790-4798. Chemistry B, 2017, 121, 4790-4798.

Charge transfer in DHICA eumelanin-like oligomers: role of hydrogen bonds. Chemical Communications, 2020, 56, 10481-10484.
38

Comprehending the quadruple bonding conundrum in $C$ ssub $\rangle 2</$ sub $\rangle$ from excited state potential energy curves. Chemical Science, 2020, 11, 7009-7014.

Effect of microsolvation on the non-radiative decay of the eumelanin monomer. Physical Chemistry Chemical Physics, 2019, 21, 26123-26132.

Computational aspects towards understanding the photoprocesses in eumelanin. Wiley
Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1505.

Multiscale Modelling:Hybrid Quantum Mechanics/Molecular Mechanics as an Example and some
Recent Developments. Current Science, 2017, 112, 1455.

Lightâ€induced excited spinâ€state trapping in spin crossover model system. International Journal of
Quantum Chemistry, 2020, 120, e26122.

Support Vector Regression-Based Monte Carlo Simulation of Flexible Water Clusters. ACS Omega, 2020, 5, 7065-7073.

Effect of Dimerization on the Nonradiative Processes of Eumelanin Monomer. Journal of Physical
Chemistry B, 2021, 125, 547-556.

Radiationless Decay Processes of an Unnatural DNA Base: Pyrrole 2-Carbaldehyde. Journal of Physical Chemistry A, 2021, 125, 5556-5561.
2.5

1

Substitution enables significant new decay channels for a non-canonical amino acid. Physical Chemistry Chemical Physics, 0, , .

