List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528592/publications.pdf Version: 2024-02-01

		28190	25716
113	17,148	55	108
papers	citations	h-index	g-index
101	101	101	
121	121	121	26756
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Letters, 2006, 6, 2427-2430.	4.5	1,180
3	A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 2014, 13, 204-212.	13.3	695
4	Micellar carriers based on block copolymers of poly(Îμ-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release, 2004, 98, 415-426.	4.8	676
5	A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2017, 12, 648-654.	15.6	649
6	Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today, 2011, 16, 354-360.	3.2	525
7	Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharmaceutical Research, 2007, 24, 1029-1046.	1.7	513
8	Tunable, Ultrasensitive pHâ€Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells. Angewandte Chemie - International Edition, 2011, 50, 6109-6114.	7.2	488
9	Magnetite-Loaded Polymeric Micelles as Ultrasensitive Magnetic-Resonance Probes. Advanced Materials, 2005, 17, 1949-1952.	11.1	443
10	Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 15-28.	0.4	438
11	Theranostic nanomedicine for cancer. Nanomedicine, 2008, 3, 137-140.	1.7	413
12	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	4.8	394
13	cRGD-Functionalized Polymer Micelles for Targeted Doxorubicin Delivery. Angewandte Chemie - International Edition, 2004, 43, 6323-6327.	7.2	384
14	An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11832-11837.	3.3	318
15	Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. Journal of the American Chemical Society, 2012, 134, 7803-7811.	6.6	312
16	Multifunctional Micellar Nanomedicine for Cancer Therapy. Experimental Biology and Medicine, 2009, 234, 123-131.	1.1	294
17	Superparamagnetic Iron Oxide Nanoparticles: Amplifying ROS Stress to Improve Anticancer Drug Efficacy. Theranostics, 2013, 3, 116-126.	4.6	277
18	Ultra-pH-Sensitive Nanoprobe Library with Broad pH Tunability and Fluorescence Emissions. Journal of the American Chemical Society, 2014, 136, 11085-11092.	6.6	241

#	Article	IF	CITATIONS
19	Overcoming Endosomal Barrier by Amphotericin B-Loaded Dual pH-Responsive PDMA- <i>b</i> -PDPA Micelleplexes for siRNA Delivery. ACS Nano, 2011, 5, 9246-9255.	7.3	218
20	Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. Journal of Controlled Release, 2011, 156, 276-280.	4.8	202
21	Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials, 2018, 157, 62-75.	5.7	178
22	MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells. Molecular Pharmaceutics, 2010, 7, 32-40.	2.3	175
23	Polymeric nanomedicine for cancer MR imaging and drug delivery. Chemical Communications, 2009, , 3497.	2.2	165
24	Modeling Particle Shape-Dependent Dynamics in Nanomedicine. Journal of Nanoscience and Nanotechnology, 2011, 11, 919-928.	0.9	165
25	A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering, 2017, 1, .	11.6	163
26	Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nature Biomedical Engineering, 2021, 5, 455-466.	11.6	157
27	Efficacy of beta-lapachone in pancreatic cancer treatment: Exploiting the novel, therapeutic target NQO1. Cancer Biology and Therapy, 2005, 4, 102-109.	1.5	153
28	β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. Journal of Controlled Release, 2007, 122, 365-374.	4.8	152
29	β-Lapachone Micellar Nanotherapeutics for Non–Small Cell Lung Cancer Therapy. Cancer Research, 2010, 70, 3896-3904.	0.4	135
30	Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Advanced Drug Delivery Reviews, 2017, 113, 87-96.	6.6	135
31	Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Experimental Biology and Medicine, 2011, 236, 20-29.	1.1	130
32	Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. Journal of Pharmaceutical Sciences, 2008, 97, 1681-1702.	1.6	129
33	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
34	Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer, 2008, 49, 3477-3485.	1.8	128
35	Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes. Pharmaceutical Research, 2003, 20, 1626-1633.	1.7	126
36	An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis. Cancer Research, 2012, 72, 3038-3047.	0.4	121

#	Article	IF	CITATIONS
37	Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nature Communications, 2017, 8, 2270.	5.8	121
38	Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. Journal of Controlled Release, 2011, 151, 271-277.	4.8	113
39	Multiâ€Chromatic pHâ€Activatable ¹⁹ Fâ€MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemicalâ€Shift Barcodes. Angewandte Chemie - International Edition, 2013, 52, 8074-8078.	7.2	106
40	Targeting the Oncogene KRAS Mutant Pancreatic Cancer by Synergistic Blocking of Lysosomal Acidification and Rapid Drug Release. ACS Nano, 2019, 13, 4049-4063.	7.3	105
41	Molecular basis of cooperativity in pH-triggered supramolecular self-assembly. Nature Communications, 2016, 7, 13214.	5.8	98
42	Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nature Communications, 2020, 11, 3257.	5.8	97
43	<i>In vivo</i> Off-Resonance Saturation Magnetic Resonance Imaging of αvβ3-Targeted Superparamagnetic Nanoparticles. Cancer Research, 2009, 69, 1651-1658.	0.4	94
44	Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. Journal of Controlled Release, 2015, 200, 201-211.	4.8	88
45	Synthetic nanovaccines for immunotherapy. Journal of Controlled Release, 2017, 263, 200-210.	4.8	88
46	Catalase Abrogates β-Lapachone–Induced PARP1 Hyperactivation–Directed Programmed Necrosis in NQO1-Positive Breast Cancers. Molecular Cancer Therapeutics, 2013, 12, 2110-2120.	1.9	85
47	Development of β-Lapachone Prodrugs for Therapy Against Human Cancer Cells with Elevated NAD(P)H:Quinone Oxidoreductase 1 Levels. Clinical Cancer Research, 2005, 11, 3055-3064.	3.2	84
48	Prostate Cancer Radiosensitization through Poly(ADP-Ribose) Polymerase-1 Hyperactivation. Cancer Research, 2010, 70, 8088-8096.	0.4	82
49	A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524.	5.8	71
50	Digitization of Endocytic pH by Hybrid Ultraâ€pHâ€Sensitive Nanoprobes at Singleâ€Organelle Resolution. Advanced Materials, 2017, 29, 1603794.	11.1	69
51	Intratumoral Delivery of β-Lapachone via Polymer Implants for Prostate Cancer Therapy. Clinical Cancer Research, 2009, 15, 131-139.	3.2	68
52	Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods. Journal of Biomedical Materials Research - Part A, 2007, 81A, 161-170.	2.1	67
53	Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. Journal of Materials Chemistry, 2011, 21, 4796.	6.7	62
54	Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. Journal of Controlled Release, 2019, 300, 154-160.	4.8	61

#	Article	IF	CITATIONS
55	Doxorubicin and β-Lapachone Release and Interaction with Micellar Core Materials: Experiment and Modeling. Experimental Biology and Medicine, 2007, 232, 1090-1099.	1.1	58
56	Fabrication and characterization of controlled release poly(D,L-lactide-co-glycolide) millirods. Journal of Biomedical Materials Research Part B, 2001, 55, 512-522.	3.0	55
57	Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polymer Chemistry, 2016, 7, 5949-5956.	1.9	55
58	Modeling doxorubicin transport to improve intratumoral drug delivery to RF ablated tumors. Journal of Controlled Release, 2007, 124, 11-19.	4.8	51
59	Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window. Nature Communications, 2020, 11, 5828.	5.8	49
60	PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers. Nature Biomedical Engineering, 2020, 4, 314-324.	11.6	48
61	Quantification of in vivo doxorubicin transport from PLGA millirods in thermoablated rat livers. Journal of Controlled Release, 2003, 91, 157-166.	4.8	47
62	Tumorâ€Targeted Inhibition of Monocarboxylate Transporter 1 Improves Tâ€Cell Immunotherapy of Solid Tumors. Advanced Healthcare Materials, 2021, 10, e2000549.	3.9	47
63	Cloning and mutational analysis of human malonyl-coenzyme A decarboxylase. Journal of Lipid Research, 1999, 40, 178-82.	2.0	47
64	Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells. Otolaryngology - Head and Neck Surgery, 2010, 143, 109-115.	1.1	42
65	Chaotropicâ€Anionâ€Induced Supramolecular Selfâ€Assembly of Ionic Polymeric Micelles. Angewandte Chemie - International Edition, 2014, 53, 8074-8078.	7.2	40
66	Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Reports, 2015, 12, 371-379.	2.9	40
67	β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy. Molecular Pharmaceutics, 2015, 12, 3999-4010.	2.3	40
68	A mechanistic model of controlled drug release from polymer millirods: Effects of excipients and complex binding. Journal of Controlled Release, 2007, 119, 111-120.	4.8	39
69	Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. Journal of Immunology, 2017, 199, 3840-3848.	0.4	39
70	Modulating βâ€lapachone release from polymer millirods through cyclodextrin complexation. Journal of Pharmaceutical Sciences, 2006, 95, 2309-2319.	1.6	38
71	In vivo drug distribution dynamics in thermoablated and normal rabbit livers from biodegradable polymers. Journal of Biomedical Materials Research Part B, 2002, 62, 308-314.	3.0	37
72	Nano-Immune-Engineering Approaches to Advance Cancer Immunotherapy: Lessons from Ultra-pH-Sensitive Nanoparticles. Accounts of Chemical Research, 2020, 53, 2546-2557.	7.6	34

#	Article	IF	CITATIONS
73	Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles. Accounts of Chemical Research, 2019, 52, 1485-1495.	7.6	33
74	Membrane-encased polymer millirods for sustained release of 5-fluorouracil. Journal of Biomedical Materials Research Part B, 2002, 61, 203-211.	3.0	31
75	Combined radiofrequency ablation and doxorubicin-eluting polymer implants for liver cancer treatment. Journal of Biomedical Materials Research - Part A, 2007, 81A, 205-213.	2.1	31
76	A Redoxâ€Activatable Fluorescent Sensor for the Highâ€Throughput Quantification of Cytosolic Delivery of Macromolecules. Angewandte Chemie - International Edition, 2017, 56, 1319-1323.	7.2	30
77	A novel class of polymeric pH-responsive MRI CEST agents. Chemical Communications, 2013, 49, 6418.	2.2	29
78	In vivo optical imaging of folate receptorâ€Î² in head and neck squamous cell carcinoma. Laryngoscope, 2014, 124, E312-9.	1.1	28
79	Prodrug Strategy to Achieve Lyophilizable, High Drug Loading Micelle Formulations Through Diester Derivatives of Î²â€Łapachone. Advanced Healthcare Materials, 2014, 3, 1210-1216.	3.9	27
80	Nanotechnology-enabled delivery of NQO1 bioactivatable drugs. Journal of Drug Targeting, 2015, 23, 672-680.	2.1	26
81	Combined modeling and experimental approach for the development of dual-release polymer millirods. Journal of Controlled Release, 2002, 83, 427-435.	4.8	25
82	Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants. Medical and Biological Engineering and Computing, 2008, 46, 1039-1049.	1.6	22
83	Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. , 2022, 10, e003960.		22
84	Local release of dexamethasone from polymer millirods effectively prevents fibrosis after radiofrequency ablation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 174-182.	2.1	21
85	Characterization and Optimization of mTHPP Nanoparticles for Photodynamic Therapy of Head and Neck Cancer. Otolaryngology - Head and Neck Surgery, 2011, 145, 612-617.	1.1	21
86	Detection of Lymph Node Metastases by Ultra-pH-Sensitive Polymeric Nanoparticles. Theranostics, 2020, 10, 3340-3350.	4.6	19
87	Comparison of Doxorubicin Concentration Profiles in Radiofrequency-Ablated Rat Livers from Sustained- and Dual-Release PLGA Millirods. Pharmaceutical Research, 2004, 21, 394-399.	1.7	18
88	Effect of fibrous capsule formation on doxorubicin distribution in radiofrequency ablated rat livers. Journal of Biomedical Materials Research Part B, 2004, 69A, 398-406.	3.0	17
89	Poly(D,L-lactide-co-glycolide)/poly(ethylenimine) blend matrix system for pH sensitive drug delivery. Journal of Applied Polymer Science, 2006, 100, 89-96.	1.3	17
90	Exploiting nanoscale cooperativity for precision medicine. Advanced Drug Delivery Reviews, 2020, 158, 63-72.	6.6	17

#	Article	IF	CITATIONS
91	Off-resonance saturation MRI of superparamagnetic nanoprobes: Theoretical models and experimental validations. Journal of Magnetic Resonance, 2011, 209, 53-60.	1.2	16
92	Noninvasive monitoring of local drug release in a rabbit radiofrequency (RF) ablation model using X-ray computed tomography. Journal of Controlled Release, 2002, 83, 415-425.	4.8	15
93	Size-controlled polyelectrolyte nanocapsules via layer-by-layer self-assembly. Journal of Materials Science, 2004, 39, 1429-1432.	1.7	15
94	Local carboplatin delivery and tissue distribution in livers after radiofrequency ablation. Journal of Biomedical Materials Research Part B, 2003, 67A, 510-516.	3.0	13
95	Antigen folding improves loading efficiency and antitumor efficacy of PC7A nanoparticle vaccine. Journal of Controlled Release, 2021, 329, 353-360.	4.8	13
96	Lysosome-oriented, dual-stage pH-responsive polymeric micelles for Î ² -lapachone delivery. Journal of Materials Chemistry B, 2016, 4, 7429-7440.	2.9	10
97	A Standardized Framework for Fluorescence-Guided Margin Assessment for Head and Neck Cancer Using a Tumor Acidosis Sensitive Optical Imaging Agent. Molecular Imaging and Biology, 2021, 23, 809-817.	1.3	8
98	Polyvalent design in the cGAS-STING pathway. Seminars in Immunology, 2021, 56, 101580.	2.7	8
99	A Redoxâ€Activatable Fluorescent Sensor for the Highâ€Throughput Quantification of Cytosolic Delivery of Macromolecules. Angewandte Chemie, 2017, 129, 1339-1343.	1.6	6
100	Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification. Nature Communications, 2022, 13, 1760.	5.8	6
101	Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles. , 2009, 2009, 4095-7.		5
102	Image-guided surgery for tumor agnostic detection of solid tumors using the pH-activated micellar imaging agent ONM-100 Journal of Clinical Oncology, 2019, 37, 3068-3068.	0.8	4
103	Theranostic Polymeric Micelles for Cancer Imaging and Therapy. Nanostructure Science and Technology, 2012, , 257-276.	0.1	2
104	Surface energy induced patterning of polymer nanostructures for cancer diagnosis and therapy. , 2007, , .		1
105	CLINICAL APPLICATIONS OF HEME BIOSYNTHETIC PATHWAY: Photodynamic Therapy with Protoporphyrin IX. , 2011, , 197-209.		1
106	NQO1 Bioactivatable Drugs Enhance Radiation Responses. , 2016, , 225-252.		1
107	P857â€ONM-500 – a novel STING-activating therapeutic nanovaccine platform for cancer immunotherapy. , 2020, , .		1
108	Factors Associated with Lymph Node Count in Mucosal Squamous Cell Carcinoma Neck Dissection. Laryngoscope, 2021, 131, 1516-1521.	1.1	1

#	Article	IF	CITATIONS
109	Electron Tomography for 3-Dimensional Characterization of Nanoconstructs. Microscopy and Microanalysis, 2007, 13, .	0.2	0
110	Jet rollable nanoimprint lithography with piezoelectric jetting of resist. , 2013, , .		0
111	TECHNIQUES IN X-RAY COMPUTED TOMOGRAPHY IN THE EVALUATION OF DRUG RELEASE SYSTEMS AND THEIR APPLICATION. , 2005, , 105-131.		0
112	Zinc Superparamagnetic Iron Oxide Nanoparticles for Use as MRI Contrast Agents. , 2007, , .		0
113	Influence of Nanoparticle Design on Binding Efficiency. , 2010, , .		0
113	Influence of Nanoparticle Design on Binding Efficiency. , 2010, , .		0