Georg Held

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528541/publications.pdf Version: 2024-02-01

CEORC HELD

#	Article	IF	CITATIONS
1	Dynamics over a Cu–graphite electrode during the gas-phase CO ₂ reduction investigated by APXPS. Faraday Discussions, 2022, 236, 126-140.	1.6	7
2	Resonant Electron Spectroscopy: Identification of Atomic Contributions to Valence States. Faraday Discussions, 2022, , .	1.6	2
3	On the Stability of Isolated Iridium Sites in Nâ€Rich Frameworks Against Agglomeration Under Reducing Conditions. ChemCatChem, 2022, 14, .	1.8	12
4	Identifying chemical and physical changes in wide-gap semiconductors using real-time and near ambient-pressure XPS. Faraday Discussions, 2022, , .	1.6	2
5	<i>In situ</i> surface analysis of palladium–platinum alloys in methane oxidation conditions. Faraday Discussions, 2022, , .	1.6	2
6	Direct <i>in situ</i> spectroscopic evidence of the crucial role played by surface oxygen vacancies in the O ₂ .sensing mechanism of SnO ₂ . Chemical Science, 2022, 13, 6089-6097.	3.7	7
7	Determination of H-Atom Positions in Organic Crystal Structures by NEXAFS Combined with Density Functional Theory: a Study of Two-Component Systems Containing Isonicotinamide. Journal of Physical Chemistry A, 2022, 126, 2889-2898.	1.1	8
8	The Versatile Soft X-Ray (VerSoX) Beamline at Diamond Light Source. Synchrotron Radiation News, 2022, 35, 39-47.	0.2	5
9	Operando characterisation of alumina-supported bimetallic Pd–Pt catalysts during methane oxidation in dry and wet conditions. Journal Physics D: Applied Physics, 2021, 54, 174006.	1.3	8
10	Study of the evolution of FeN C and Fe3C species in Fe/N/C catalysts during the oxygen reduction reaction in acid and alkaline electrolyte. Journal of Power Sources, 2021, 490, 229487.	4.0	34
11	Influence of Synthesis Conditions on the Structure of Nickel Nanoparticles and their Reactivity in Selective Asymmetric Hydrogenation. ChemCatChem, 2020, 12, 1491-1503.	1.8	11
12	Investigations of Carbon Nitride-Supported Mn3O4 Oxide Nanoparticles for ORR. Catalysts, 2020, 10, 1289.	1.6	14
13	Adsorption of Aspartic Acid on Ni{100}: A Combined Experimental and Theoretical Study. Langmuir, 2020, 36, 9399-9411.	1.6	5
14	Methanol Synthesis at a Wide Range of H ₂ /CO ₂ Ratios over a Rhâ€In Bimetallic Catalyst. Angewandte Chemie - International Edition, 2020, 59, 16039-16046.	7.2	54
15	Methanol Synthesis at a Wide Range of H ₂ /CO ₂ Ratios over a Rhâ€In Bimetallic Catalyst. Angewandte Chemie, 2020, 132, 16173-16180.	1.6	17
16	Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies. Physical Chemistry Chemical Physics, 2020, 22, 18806-18814.	1.3	9
17	The electronic structure, surface properties, and <i>in situ</i> N ₂ O decomposition of mechanochemically synthesised LaMnO ₃ . Physical Chemistry Chemical Physics, 2020, 22, 18774-18787.	1.3	10
18	Elucidating the mechanism of the CO ₂ methanation reaction over Ni–Fe hydrotalcite-derived catalysts <i>via</i> surface-sensitive <i>in situ</i> XPS and NEXAFS. Physical Chemistry Chemical Physics, 2020, 22, 18788-18797.	1.3	29

#	Article	IF	CITATIONS
19	Ambient-pressure endstation of the Versatile Soft X-ray (VerSoX) beamline at Diamond Light Source. Journal of Synchrotron Radiation, 2020, 27, 1153-1166.	1.0	40
20	Crystallography of Metal Surfaces and Adsorbed Layers. Springer Handbooks, 2020, , 197-223.	0.3	1
21	The structure of alanine anionic-zwitterionic dimers on Pd(111); formation of salt bridges. Surface Science, 2019, 679, 79-85.	0.8	1
22	Adsorption Behavior of Organic Molecules: A Study of Benzotriazole on Cu(111) with Spectroscopic and Theoretical Methods. Langmuir, 2019, 35, 882-893.	1.6	22
23	Combined Experimental and Theoretical Study of Methyl Acetoacetate Adsorption on Ni{100}. Journal of Physical Chemistry C, 2018, 122, 6186-6194.	1.5	6
24	Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications, 2018, 9, 935.	5.8	182
25	"Pop-On and Pop-Off―Surface Chemistry of Alanine on Ni{111} under Elevated Hydrogen Pressures. Journal of Physical Chemistry C, 2018, 122, 7720-7730.	1.5	5
26	Adsorption of Methyl Acetoacetate at Ni{111}: Experiment and Theory. Journal of Physical Chemistry C, 2016, 120, 27490-27499.	1.5	17
27	The Partial Oxidation of Methane Over Pd/Al2O3 Catalyst Nanoparticles Studied In-Situ by Near Ambient-Pressure X-ray Photoelectron Spectroscopy. Topics in Catalysis, 2016, 59, 516-525.	1.3	26
28	Stereochemistry and thermal stability of tartaric acid on the intrinsically chiral Cu{531} surface. Surface Science, 2016, 643, 108-116.	0.8	13
29	Surface Chemistry of Alanine on Ni{111}. Journal of Physical Chemistry C, 2015, 119, 26566-26574.	1.5	17
30	Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence. Surface Science, 2014, 629, 114-122.	0.8	16
31	Observing the in situ chiral modification of Ni nanoparticles using scanning transmission X-ray microspectroscopy. Surface Science, 2014, 629, 108-113.	0.8	6
32	Surface chemistry of glycine on Pt{111} in different aqueous environments. Surface Science, 2013, 607, 10-19.	0.8	30
33	Chromium nanostructures formed by dewetting of heteroepitaxial films on W(100). Physical Review B, 2012, 86, .	1.1	8
34	Complete Experimental Structure Determination of the p(3 × 2) <i>pg</i> Phase of Glycine on Cu{110}. Journal of Physical Chemistry C, 2012, 116, 618-625.	1.5	30
35	The Importance of Attractive Three-Point Interaction in Enantioselective Surface Chemistry: Stereospecific Adsorption of Serine on the Intrinsically Chiral Cu{531} Surface. Journal of the American Chemical Society, 2012, 134, 9615-9621.	6.6	47
36	Coverage-dependent molecular tilt of carbon monoxide chemisorbed on Pt{110}: A combined LEED and DFT structural analysis. Surface Science, 2012, 606, 383-393.	0.8	10

#	Article	IF	CITATIONS
37	Preventing carbon contamination of optical devices for X-rays: the effect of oxygen on photon-induced dissociation of CO on platinum. Journal of Synchrotron Radiation, 2012, 19, 570-573.	1.0	13
38	A Step toward the Wet Surface Chemistry of Glycine and Alanine on Cu{110}: Destabilization and Decomposition in the Presence of Near-Ambient Water Vapor. Journal of the American Chemical Society, 2011, 133, 6659-6667.	6.6	33
39	Epitaxial Growth of Ultrathin Palladium Films on Re{0001}. Journal of Physical Chemistry C, 2011, 115, 4191-4199.	1.5	10
40	Highly Proton-Ordered Water Structures on Oxygen Precovered Ru{0001}. Journal of Physical Chemistry A, 2011, 115, 7205-7209.	1.1	14
41	The Study of Chiral Adsorption Systems Using Synchrotron-Based Structural and Spectroscopic Techniques: Stereospecific Adsorption of Serine on Au-Modified Chiral Cu{531} Surfaces. Topics in Catalysis, 2011, 54, 1414-1428.	1.3	22
42	The adsorption geometry and chemical state of lysine on Cu{110}. Surface Science, 2011, 605, 468-472.	0.8	23
43	Photoelectron spectroscopy of metal surfaces for potential heterogeneous catalysis. Spectroscopic Properties of Inorganic and Organometallic Compounds, 2011, , 1-33.	0.4	0
44	Oxidation of polycrystalline Ni studied by spectromicroscopy: Phase separation in the early stages of crystallite growth. Physical Review B, 2010, 81, .	1.1	7
45	Hydrogen Bond-Induced Pair Formation of Glycine on the Chiral Cu{531} Surface. Langmuir, 2010, 26, 10918-10923.	1.6	32
46	Global and Local Expression of Chirality in Serine on the Cu{110} Surface. Langmuir, 2010, 26, 18841-18851.	1.6	49
47	Experimental structure determination of the chemisorbed overlayers of chlorine and iodine on Au{111}. Physical Chemistry Chemical Physics, 2010, 12, 10754.	1.3	21
48	Alignment of a Model Amyloid Peptide Fragment in Bulk and at a Solid Surface. Journal of Physical Chemistry B, 2010, 114, 8244-8254.	1.2	33
49	Surface geometry of Cu{531}. Physical Review B, 2009, 79, .	1.1	16
50	Dissociation of water on oxygen-covered Rh{111}. Journal of Chemical Physics, 2009, 131, 214707.	1.2	20
51	The adsorption and stability of sulfur containing amino acids on Cu{531}. Surface Science, 2009, 603, 1253-1261.	0.8	44
52	A Stable Pure Hydroxyl Layer on Pt{110}-(1×2). Journal of Physical Chemistry C, 2009, 113, 21755-21764.	1.5	13
53	The Chemistry of Intrinsically Chiral Surfaces. Topics in Catalysis, 2008, 48, 128-136.	1.3	39
54	Chemical composition and reactivity of water on clean and oxygen-covered Pd{111}. Surface Science, 2008, 602, 3540-3549.	0.8	43

#	Article	IF	CITATIONS
55	Synergetic Effects of the Cu/Pt{110} Surface Alloy:  Enhanced Reactivity of Water and Carbon Monoxide. Journal of Physical Chemistry C, 2008, 112, 6422-6429.	1.5	20
56	Chemical composition and reactivity of water on hexagonal Pt-group metal surfaces. Physical Chemistry Chemical Physics, 2008, 10, 6150.	1.3	64
57	Modifying the adsorption characteristics of water on Ru{0001} with preadsorbed oxygen. Physical Review B, 2008, 78, .	1.1	26
58	Enantiospecific Adsorption of Alanine on the Chiral Cu{531} Surface. Journal of Physical Chemistry C, 2007, 111, 8331-8336.	1.5	63
59	Phase mixing and phase separation accompanying the catalytic oxidation of CO on Ir{100}. Surface Science, 2007, 601, 1285-1295.	0.8	19
60	The local adsorption geometry and electronic structure of alanine on Cu{110}. Surface Science, 2006, 600, 1924-1935.	0.8	94
61	The adsorption geometry of sulphur on Ir{100}: A quantitative LEED study. Surface Science, 2006, 600, 880-889.	0.8	10
62	The surface geometry of carbonmonoxide and hydrogen co-adsorbed on Ni{111}. Surface Science, 2005, 574, 193-204.	0.8	24
63	The surface geometries of the medium and high coverage carbon monoxide structures c(2×4)–(2CO) and R19°–(4CO) on Ni{111}. Surface Science, 2005, 575, 343-357.	0.8	16
64	Model car-exhaust catalyst studied by TPD and TP-RAIRS: Surface reactions of NO on clean and O-covered Ir{100}. Surface Science, 2005, 586, 1-14.	0.8	19
65	The exclusive use of integer-order spots for LEED-IV structure analysis of adsorption systems: p(2×2)-O on Ni{111}. Surface Science, 2005, 594, 203-211.	0.8	7
66	Water adsorption on O-covered Ru{0001}: Coverage-dependent change from dissociation to molecular adsorption. Chemical Physics Letters, 2005, 414, 311-315.	1.2	28
67	A molecular T-matrix approach to calculating Low-Energy Electron Diffraction intensities for ordered molecular adsorbates. Surface Science, 2005, 579, 89-99.	0.8	20
68	The structure of the mixed OH+H2O overlayer on Pt{111}. Journal of Chemical Physics, 2005, 123, 064711.	1.2	45
69	Energy-Dependent Cancellation of Diffraction Spots due to Surface Roughening. Physical Review Letters, 2005, 95, 036102.	2.9	17
70	Effect of Oxygen Adsorption on the Chiral Pt{531} Surface. Journal of Physical Chemistry B, 2005, 109, 6159-6163.	1.2	16
71	The Structure of the Chiral Pt{531} Surface:Â A Combined LEED and DFT Study. Journal of Physical Chemistry B, 2005, 109, 22456-22462.	1.2	24
72	Experimental Evidence for a Partially Dissociated Water Bilayer on Ru{0001}. Physical Review Letters, 2004, 93, 196102.	2.9	130

#	Article	IF	CITATIONS
73	The Surface Geometry of Carbon Monoxide and Oxygen Co-adsorbed on Ni{111}. Zeitschrift Fur Physikalische Chemie, 2004, 218, 915-927.	1.4	8
74	A FORTRAN-90 Low-Energy Electron Diffraction program (LEED90 v1.1). Computer Physics Communications, 2004, 161, 151-165.	3.0	3
75	Molecular t-matrices for Low-Energy Electron Diffraction (TMOL v1.1). Computer Physics Communications, 2004, 161, 166-178.	3.0	3
76	The interplay between geometry, electronic structure, and reactivity of Cu-Ni bimetallic (111) surfaces. Applied Physics A: Materials Science and Processing, 2003, 76, 689-700.	1.1	10
77	Low-temperature partial dissociation of water on Cu(110). Chemical Physics Letters, 2003, 377, 163-169.	1.2	66
78	Adsorption and dissociation of benzene on bimetallic surfaces—the influence of surface geometry and electronic structure. Journal of Physics Condensed Matter, 2003, 15, R1501-R1516.	0.7	7
79	Dissociation and oxidation of methanol on Cu(). Surface Science, 2002, 507-510, 845-850.	0.8	67
80	Kinetic parameters of CO adsorbed on Pt(111) studied by in situ high resolution x-ray photoelectron spectroscopy. Journal of Chemical Physics, 2002, 117, 10852-10859.	1.2	113
81	Adsorption of CO on ultrathin Cr layers on Ru(0001). Surface Science, 2002, 512, 107-116.	0.8	6
82	Temperature dependent oxidation of thin Ni layers on Cu(). Surface Science, 2002, 516, 95-102.	0.8	8
83	Light-Atom Location in Adsorbed Benzene by Experiment and Theory. Physical Review Letters, 2001, 87, 216102.	2.9	47
84	Coverage-dependent changes in the adsorption geometries of ordered benzene layers on Ru(0001). Surface Science, 2001, 475, 18-36.	0.8	35
85	Correlation between chemical properties and electronic structure of pseudomorphic Cu monolayers on Ni(111) and Ru(0001). Surface Science, 2001, 477, 113-125.	0.8	11
86	Formation of a new type of chromium oxide by deposition of chromium onto water precovered Cu(111). Surface Science, 2001, 480, 73-83.	0.8	11
87	lr{100}-(1×3)-H, an intermediate phase between the (1×1) and the (1×5) phases of Ir{100}. Surface Science 2001, 488, 154-163.	² ,0.8	8
88	Surface structure analysis based on the exclusive use of the specular LEED spot – a theoretical study. Surface Science, 2001, 490, 274-284.	0.8	4
89	The transition from oxygen chemisorption to oxidation of ultra-thin Ni layers on Cu(111). Journal of Chemical Physics, 2001, 115, 1902-1908.	1.2	11
90	Electronic structure and orientation of benzene adsorbed on a pseudomorphic Cu monolayer on Ru(0001). Surface Science, 2000, 454-456, 83-87.	0.8	12

#	Article	IF	CITATIONS
91	The growth of thin Cu layers on Ni(111) studied by CO titration and photoelectron spectroscopy. Surface Science, 2000, 453, 201-213.	0.8	29
92	THE ORIENTATION OF BENZENE ON BIMETALLIC SURFACES. Surface Review and Letters, 1999, 06, 893-901.	0.5	17
93	The growth of ultrathin Cr films on benzene-covered Ni(111). Applied Surface Science, 1999, 142, 327-331.	3.1	1
94	Electronic properties of a pseudomorphic Cu-layer on Ni(111). Applied Surface Science, 1999, 142, 18-22.	3.1	14
95	Benzene adsorption on a pseudomorphic Cu monolayer on Ni(111) – a combined TPD and ARUPS study. Surface Science, 1999, 437, 125-136.	0.8	21
96	Analysis of thermal vibrations by temperature-dependent low energy electron diffraction: comparison of soft modes of pure and O-coadsorbed CO on Ru(0001). Surface Science, 1999, 441, 91-106.	0.8	21
97	Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution X-ray photoelectron spectroscopy. Surface Science, 1998, 398, 154-171.	0.8	109
98	Surface core-level shifts of the polar semiconductor Cd(Zn)Te(100). Physical Review B, 1997, 56, 2070-2078.	1.1	12
99	Realistic molecular distortions and strong substrate buckling induced by the chemisorption of benzene on Ni{111}. Journal of Chemical Physics, 1996, 105, 11305-11312.	1.2	74
100	A lowâ€energy electron diffraction data acquisition system for very low electron doses based upon a slow scan charge coupled device camera. Review of Scientific Instruments, 1996, 67, 378-383.	0.6	51
101	Structural Isotope Effect in Water Bilayers Adsorbed on Ru(001). Physical Review Letters, 1995, 74, 4221-4224.	2.9	55
102	Variations of LEED intensities with angle of incidence and the influence on spot profiles. Physical Review B, 1995, 51, 17856-17866.	1.1	13
103	Isotope effects in structure and kinetics of water adsorbates on Ru(001). Surface Science, 1995, 327, 301-320.	0.8	91
104	The geometry of ordered benzene layers on Ru(001). Surface Science, 1995, 325, L379-L384.	0.8	51
105	Rearrangement of stepped Ru(001) surfaces upon oxygen adsorption. Surface Science, 1995, 331-333, 1122-1128.	0.8	14
106	A LEED-IV determination of the Ru(001)-p(2 × 2) (O + CO) structure: A coadsorbate-induced molecular tilt. Surface Science, 1995, 340, 159-171.	0.8	44
107	Structural rearrangement by coadsorption: a LEED IV determination of the Ru(001)-p(2 × 2)(2O + CO) structure. Surface Science, 1994, 317, 131-142.	0.8	56
108	The structure of dense sulphur layers on Ru(0001) I. The c(2 × 4) structure. Surface Science, 1994, 316, 81-91.	0.8	32

#	Article	IF	CITATIONS
109	The structure of the p(â^š3 × â^š3)R30° bilayer of D2O on Ru(001). Surface Science, 1994, 316, 92-102.	0.8	196
110	Adsorbate induced relaxations of S/Ru(0001): p(2 × 2) and p(â^š3 × â^š3)R30° structures. Surface Science, 1994, 303, 77-88.	0.8	46
111	Surface crystallography of Re(0001)â^'(2×2)â^'S and Re(0001)â^'(2â^š3× 2â^š3)R30°â^'6S: a combined LEED study. Surface Science, 1994, 312, 10-20.	and STM	31
112	Fitting dozens of coordinates by LEED: automated determination of complex surface structures. Surface Science, 1993, 287-288, 428-431.	0.8	18
113	A LEED—IV investigation of the Ru(001)-p(2 × 1)-H structure. Surface Science, 1992, 271, 21-31.	0.8	66
114	A diffuse LEED study of the adsorption structure of disordered benzene on Pt(111). Surface Science, 1991, 249, 21-34.	0.8	139
115	Adsorbate induced reconstruction by strong chemisorption: Ru(001)p(2×2)-O. Surface Science, 1989, 222, 451-463.	0.8	170
116	Oxygen induced reconstruction of a close-packed surface: A LEED IV study on Ru(001)-p(2 × 1)O. Surface Science, 1989, 220, 43-58.	0.8	152