Jacob B Khurgin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528273/publications.pdf Version: 2024-02-01

LACOB R KHURCIN

#	Article	IF	CITATIONS
1	How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 2015, 10, 2-6.	15.6	787
2	Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1062.	0.9	292
3	Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime. Nano Letters, 2011, 11, 2219-2224.	4.5	285
4	On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. Nano Letters, 2016, 16, 3005-3013.	4.5	265
5	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	11.1	225
6	Reflecting upon the losses in plasmonics and metamaterials. MRS Bulletin, 2012, 37, 768-779.	1.7	219
7	Second-order nonlinear effects in asymmetric quantum-well structures. Physical Review B, 1988, 38, 4056-4066.	1.1	161
8	Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Optics Express, 2012, 20, 28594.	1.7	156
9	Slow light in various media: a tutorial. Advances in Optics and Photonics, 2010, 2, 287.	12.1	154
10	Highly power-efficient quantum cascade lasers. Nature Photonics, 2010, 4, 95-98.	15.6	150
11	Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Optics Express, 2010, 18, 26525.	1.7	139
12	Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Optics Express, 2008, 16, 15777.	1.7	129
13	Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier. IEEE Photonics Technology Letters, 2009, 21, 1686-1688.	1.3	121
14	Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nature Photonics, 2014, 8, 468-473.	15.6	117
15	Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters, 2007, 90, 111107.	1.5	116
16	Practical enhancement of photoluminescence by metal nanoparticles. Applied Physics Letters, 2009, 94,	1.5	116
17	In search of the elusive lossless metal. Applied Physics Letters, 2010, 96, 181102.	1.5	116
18	Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Applied Physics Letters, 2014, 104, .	1.5	116

#	Article	IF	CITATIONS
19	Nonlinear optical properties of halide perovskites and their applications. Applied Physics Reviews, 2020, 7, .	5.5	114
20	Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2, 335.	4.8	111
21	ITO-based electro-absorption modulator for photonic neural activation function. APL Materials, 2019, 7, .	2.2	105
22	Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Applied Physics Letters, 2011, 99, 211106.	1.5	104
23	Hot carriers generated by plasmons: where are they generated and where do they go from there?. Faraday Discussions, 2019, 214, 35-58.	1.6	102
24	Charge-Induced Second-Harmonic Generation in Bilayer WSe ₂ . Nano Letters, 2015, 15, 5653-5657.	4.5	101
25	Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Optics Letters, 2005, 30, 513.	1.7	97
26	Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Applied Physics Letters, 2012, 100, .	1.5	94
27	Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study. IEEE Journal of Quantum Electronics, 1993, 29, 1104-1111.	1.0	91
28	Fundamental limitations in spontaneous emission rate of single-photon sources. Optica, 2016, 3, 1418.	4.8	85
29	Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1968.	0.9	84
30	Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discussions, 2015, 178, 109-122.	1.6	84
31	Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers. ACS Photonics, 2017, 4, 2871-2880.	3.2	84
32	Enhancement of optical properties of nanoscaled objects by metal nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B83.	0.9	79
33	Linearized Mach-Zehnder intensity modulator. IEEE Photonics Technology Letters, 2003, 15, 531-533.	1.3	77
34	The case for quantum plasmonics. Nature Photonics, 2017, 11, 398-400.	15.6	77
35	Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 2020, 9, 453-471.	2.9	77
36	Backward optical parametric oscillators and amplifiers. IEEE Journal of Quantum Electronics, 1996, 32, 1574-1582.	1.0	76

#	Article	IF	CITATIONS
37	Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1748.	0.9	76
38	Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 2020, 7, 226.	4.8	76
39	Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Applied Physics Letters, 2009, 94, 091101.	1.5	74
40	Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer. Optics Express, 2013, 21, 22549.	1.7	73
41	Trace gas Raman spectroscopy using functionalized waveguides. Optica, 2016, 3, 891.	4.8	73
42	Strain-free Geâ^•GeSiSn quantum cascade lasers based on L-valley intersubband transitions. Applied Physics Letters, 2007, 90, 251105.	1.5	72
43	Active region design of a terahertz GaN/ Al0.15Ga0.85N quantum cascade laser. Superlattices and Microstructures, 2005, 37, 107-113.	1.4	71
44	Light slowing down in Moiré fiber gratings and its implications for nonlinear optics. Physical Review A, 2000, 62, .	1.0	70
45	Graphene—A rather ordinary nonlinear optical material. Applied Physics Letters, 2014, 104, .	1.5	68
46	Hot phonon effect on electron velocity saturation in GaN: A second look. Applied Physics Letters, 2007, 91, .	1.5	67
47	Secondâ€order susceptibility of asymmetric coupled quantum well structures. Applied Physics Letters, 1987, 51, 2100-2102.	1.5	66
48	Electron beam pumped lasing in ZnSe/ZnSSe superlattice structuresn grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1987, 62, 3071-3074.	1.1	65
49	Hyperbolic metamaterials: beyond the effective medium theory. Optica, 2016, 3, 1388.	4.8	65
50	Practical limits of absorption enhancement near metal nanoparticles. Applied Physics Letters, 2009, 94,	1.5	64
51	Plasmonic Hot Carriers-Controlled Second Harmonic Generation in WSe ₂ Bilayers. Nano Letters, 2018, 18, 1686-1692.	4.5	64
52	Performance limits of delay lines based on optical amplifiers. Optics Letters, 2006, 31, 948.	1.7	63
53	A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate. Optics Communications, 1998, 148, 105-109.	1.0	62
54	Backward second-harmonic generation in periodically poled lithium niobate. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1561.	0.9	62

#	Article	IF	CITATIONS
55	Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission. Applied Physics Letters, 2009, 95, 171103.	1.5	62
56	Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide. Optics Letters, 1999, 24, 127.	1.7	61
57	Waveguide-based electro-absorption modulator performance: comparative analysis. Optics Express, 2018, 26, 15445.	1.7	60
58	Self-organized nonlinear gratings for ultrafast nanophotonics. Nature Photonics, 2019, 13, 494-499.	15.6	60
59	Nonlinear epsilon-near-zero materials explained: opinion. Optical Materials Express, 2019, 9, 2793.	1.6	60
60	Optical isolating action in surface plasmon polaritons. Applied Physics Letters, 2006, 89, 251115.	1.5	59
61	Density-dependent electron transport and precise modeling of GaN high electron mobility transistors. Applied Physics Letters, 2015, 107, .	1.5	59
62	Guiding of visible photons at the ångström thickness limit. Nature Nanotechnology, 2019, 14, 844-850.	15.6	58
63	Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas. Optica, 2020, 7, 463.	4.8	58
64	Tunable wideband optical delay line based on balanced coupled resonator structures. Optics Letters, 2009, 34, 2655.	1.7	57
65	Plasmonic enhancement of the third order nonlinear optical phenomena: Figures of merit. Optics Express, 2013, 21, 27460.	1.7	57
66	Electroluminescence efficiency enhancement using metal nanoparticles. Applied Physics Letters, 2008, 93, .	1.5	55
67	How small can "Nano―be in a "Nanolaser�. Nanophotonics, 2012, 1, 3-8.	2.9	55
68	Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance. Nanophotonics, 2017, 7, 455-472.	2.9	55
69	Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons. Physical Review A, 2012, 85, .	1.0	54
70	Randomization of gold nano-brick arrays: a tool for SERS enhancement. Optics Express, 2013, 21, 13502.	1.7	53
71	Attojoule-efficient graphene optical modulators. Applied Optics, 2018, 57, D130.	0.9	53
72	Suppression of cross-gain modulation in SOA using RZ-DPSK modulation format. IEEE Photonics Technology Letters, 2003, 15, 162-164.	1.3	52

#	Article	IF	CITATIONS
73	Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. Optics Express, 2012, 20, 15309.	1.7	52
74	Laser-Rate-Equation Description of Optomechanical Oscillators. Physical Review Letters, 2012, 108, 223904.	2.9	52
75	Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160068.	1.6	52
76	The Role of Surface Roughness in Plasmonic-Assisted Internal Photoemission Schottky Photodetectors. ACS Photonics, 2018, 5, 4030-4036.	3.2	52
77	Current induced second harmonic generation in semiconductors. Applied Physics Letters, 1995, 67, 1113-1115.	1.5	51
78	Transversely Pumped Counterpropagating Optical Parametric Oscillation and Amplification. Physical Review Letters, 1995, 75, 429-432.	2.9	51
79	Comparative analysis of optically pumped intersubband lasers and intersubband Raman oscillators. Journal of Applied Physics, 1995, 78, 7398-7400.	1.1	51
80	Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	1.9	50
81	Role of bandtail states in laser cooling of semiconductors. Physical Review B, 2008, 77, .	1.1	49
82	Comparative Analysis of Metals and Alternative Infrared Plasmonic Materials. ACS Photonics, 2018, 5, 2541-2548.	3.2	49
83	Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses. Applied Optics, 2002, 41, 1095.	2.1	48
84	Investigation of 2-b/s/Hz 40-Gb/s DWDM Transmission Over 4>tex<\$,times,\$>/tex<100 km SMF-28 Fiber Using RZ-DQPSK and Polarization Multiplexing. IEEE Photonics Technology Letters, 2004, 16, 656-658.	1.3	48
85	Fast Thermal Switching of Wideband Optical Delay Line With No Long-Term Transient. IEEE Photonics Technology Letters, 2012, 24, 512-514.	1.3	48
86	Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators. Nano Letters, 2018, 18, 3138-3146.	4.5	48
87	Optical rectification and terahertz emission in semiconductors excited above the band gap. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 2492.	0.9	47
88	Influence of the size dispersion on the emission spectra of the Si nanostructures. Applied Physics Letters, 1996, 69, 1241-1243.	1.5	47
89	Second-harmonic generation based on quasi-phase matching: a novel configuration. Optics Letters, 1996, 21, 1445.	1.7	46
90	Closed-Loop Bias Control of Optical Quadrature Modulator. IEEE Photonics Technology Letters, 2006, 18, 2209-2211.	1.3	46

6

#	Article	IF	CITATIONS
91	Surface Plasmon-Assisted Laser Cooling of Solids. Physical Review Letters, 2007, 98, .	2.9	45
92	Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures. Optics Letters, 2007, 32, 133.	1.7	45
93	Trace gas absorption spectroscopy using functionalized microring resonators. Optics Letters, 2014, 39, 969.	1.7	45
94	Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon. Optica, 2016, 3, 1483.	4.8	45
95	Picosecond acoustic phonon pulse propagation in silicon. Physical Review B, 2004, 70, .	1.1	44
96	Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers. Applied Physics Letters, 2012, 101, .	1.5	44
97	Scaling Rules of SERS Intensity. Advanced Optical Materials, 2014, 2, 382-388.	3.6	44
98	Scaling vectors of attoJoule per bit modulators. Journal of Optics (United Kingdom), 2018, 20, 014012.	1.0	44
99	Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Scientific Reports, 2021, 11, 1287.	1.6	44
100	Fast and Slow Nonlinearities in Epsilonâ€Nearâ€Zero Materials. Laser and Photonics Reviews, 2021, 15, 2000291.	4.4	44
101	Comparative study of field enhancement between isolated and coupled metal nanoparticles: An analytical approach. Applied Physics Letters, 2010, 97, .	1.5	43
102	Ultrafast Thermal Nonlinearity. Scientific Reports, 2016, 5, 17899.	1.6	43
103	Characterization of recombination processes in multiple narrow asymmetric coupled quantum wells based on the dependence of photoluminescence on laser intensity. Applied Physics Letters, 1992, 60, 2051-2053.	1.5	41
104	Excitonic radius in the cavity polariton in the regime of very strong coupling. Solid State Communications, 2001, 117, 307-310.	0.9	41
105	A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance. Solid-State Electronics, 2017, 136, 92-101.	0.8	41
106	Relative merits of phononics vs. plasmonics: the energy balance approach. Nanophotonics, 2018, 7, 305-316.	2.9	41
107	Reversible MoS ₂ Origami with Spatially Resolved and Reconfigurable Photosensitivity. Nano Letters, 2019, 19, 7941-7949.	4.5	41
108	Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579.	2.8	40

#	Article	IF	CITATIONS
109	Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials. Optical Materials Express, 2020, 10, 1545.	1.6	40
110	Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating. Optics Letters, 2000, 25, 70.	1.7	39
111	Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels. Applied Physics Letters, 2005, 87, 174103.	1.5	39
112	Band gap engineering for laser cooling of semiconductors. Journal of Applied Physics, 2006, 100, 113116.	1.1	39
113	Second-Harmonic Generation Induced by Electric Currents in GaAs. Physical Review Letters, 2012, 108, 077403.	2.9	39
114	TiN@TiO ₂ Core–Shell Nanoparticles as Plasmonâ€Enhanced Photosensitizers: The Role of Hot Electron Injection. Laser and Photonics Reviews, 2020, 14, 1900376.	4.4	39
115	A model for visible photon emission from reverse-biased silicon p-n junctions. Applied Physics Letters, 1997, 70, 470-471.	1.5	38
116	Coupled-mode theory of field enhancement in complex metal nanostructures. Physical Review B, 2011, 84, .	1.1	37
117	Ultrafast Plasmonic Graphene Photodetector Based on the Channel Photothermoelectric Effect. ACS Photonics, 2020, 7, 488-498.	3.2	37
118	Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium. IEEE Journal of Quantum Electronics, 1998, 34, 966-974.	1.0	36
119	Plasmon Enhancement of Luminescence by Metal Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 110-118.	1.9	36
120	Two-dimensional exciton–polariton—light guiding by transition metal dichalcogenide monolayers. Optica, 2015, 2, 740.	4.8	35
121	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	1.6	34
122	Mechanism for efficient blue secondâ€harmonic generation in periodically segmented waveguides. Applied Physics Letters, 1990, 57, 2540-2542.	1.5	33
123	Roomâ€ŧemperature photopumped blue lasing in ZnSeâ€ZnS0.06Se0.94double heterostructures. Applied Physics Letters, 1991, 59, 310-311.	1.5	33
124	An ITO–graphene heterojunction integrated absorption modulator on Si-photonics for neuromorphic nonlinear activation. APL Photonics, 2021, 6, .	3.0	33
125	Integrated waveguide-DBR microcavity opto-mechanical system. Optics Express, 2011, 19, 21904.	1.7	32
126	Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si. Optics Express, 2016, 24, 19040.	1.7	32

#	Article	IF	CITATIONS
127	Exceptional points in polaritonic cavities and subthreshold Fabry–Perot lasers. Optica, 2020, 7, 1015.	4.8	32
128	Inhomogeneous origin of the interface roughness broadening of intersubband transitions. Applied Physics Letters, 2008, 93, 091104.	1.5	31
129	Novel configuration of selfâ€electroâ€optic effect device based on asymmetric quantum wells. Applied Physics Letters, 1988, 53, 779-781.	1.5	29
130	GENERATION OF THE TERAHERZ RADIATION USING χ(3) IN SEMICONDUCTOR. Journal of Nonlinear Optical Physics and Materials, 1995, 04, 163-189.	1.1	29
131	Tunable intersubband Raman laser in GaAs/AlGaAs multiple quantum wells. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 648.	0.9	29
132	Valence intersubband lasers with inverted light-hole effective mass. Applied Physics Letters, 1998, 72, 1481-1483.	1.5	29
133	Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate. Applied Physics Letters, 1998, 73, 873-875.	1.5	29
134	Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides. Physical Review A, 2005, 72, .	1.0	29
135	Adiabatically tunable optical delay lines and their performance limitations. Optics Letters, 2005, 30, 2778.	1.7	29
136	Human Life Signs Detection Using High-Sensitivity Pulsed Laser Vibrometer. IEEE Sensors Journal, 2007, 7, 1370-1376.	2.4	29
137	Optically induced currents in dielectrics and semiconductors as a nonlinear optical effect. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C1.	0.9	29
138	Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission. APL Photonics, 2017, 2, .	3.0	29
139	Electroâ€optical switching and bistability in coupled quantum wells. Applied Physics Letters, 1989, 54, 2589-2591.	1.5	28
140	Continuousâ€wave photoluminescence excitation spectra of multiple narrowâ€stepped quantum wells: Evidence for saturation of interface traps. Applied Physics Letters, 1992, 60, 154-156.	1.5	28
141	On the origin of the second-order nonlinearity in strained Si–SiN structures. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2494.	0.9	28
142	Linear isolators using wavelength conversion. Optica, 2020, 7, 209.	4.8	28
143	Expanding the Photonic Palette: Exploring High Index Materials. ACS Photonics, 2022, 9, 743-751.	3.2	28
144	Resonant cascaded surface-emitting second-harmonic generation: a strong third-order nonlinear process. Optics Letters, 1994, 19, 1016.	1.7	27

#	Article	IF	CITATIONS
145	Reducing crosstalk and signal distortion in wavelength-division multiplexing by increasing carrier lifetimes in semiconductor optical amplifiers. Journal of Lightwave Technology, 2003, 21, 1474-1485.	2.7	27
146	From anti‣tokes photoluminescence to resonant Raman scattering in GaN single crystals and GaNâ€based heterostructures. Laser and Photonics Reviews, 2012, 6, 660-677.	4.4	27
147	Optimization and Experimental Demonstration of Plasmonic Enhanced Internal Photoemission Silicon Schottky Detectors in the Mid-IR. ACS Photonics, 2017, 4, 1015-1020.	3.2	27
148	Limits of imaging with multilayer hyperbolic metamaterials. Optics Express, 2017, 25, 13588.	1.7	27
149	Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Research, 2020, 13, 1962-1969.	5.8	27
150	Secondâ€order nonlinear optical susceptibility inpâ€doped asymmetric quantum wells. Applied Physics Letters, 1993, 62, 1727-1729.	1.5	26
151	Feasibility analysis of phonon lasers. IEEE Journal of Quantum Electronics, 2003, 39, 600-607.	1.0	26
152	Mirrorless magic. Nature Photonics, 2007, 1, 446-447.	15.6	26
153	Mid-infrared difference-frequency generation in suspended GaAs waveguides. Optics Letters, 2014, 39, 945.	1.7	26
154	Highâ€Order Shift Current Induced Terahertz Emission from Inorganic Cesium Bromine Lead Perovskite Engendered by Twoâ€Photon Absorption. Advanced Functional Materials, 2019, 29, 1904694.	7.8	26
155	Nonlinear response of the semiconductor quantum-confined structures near and below the middle of the band gap. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 624.	0.9	25
156	Cascaded optical nonlinearities: Microscopic understanding as a collective effect. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 1977.	0.9	25
157	Ring-assisted frequency discriminator with improved linearity. IEEE Photonics Technology Letters, 2002, 14, 1136-1138.	1.3	25
158	Upconversion Due to Optical-Phonon-Assisted Anti-Stokes Photoluminescence in Bulk GaN. ACS Photonics, 2015, 2, 628-632.	3.2	25
159	Generating Hot Carriers in Plasmonic Nanoparticles: When Quantization Does Matter?. ACS Photonics, 2020, 7, 547-553.	3.2	25
160	Microcavity effect on the electron-hole relative motion in semiconductor quantum wells. Physical Review B, 2003, 68, .	1.1	24
161	Low-loss suspended quantum well waveguides. Optics Express, 2008, 16, 2621.	1.7	24
162	Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study. Optics Express, 2013, 21, 28054.	1.7	24

#	Article	IF	CITATIONS
163	Low kappa, narrow bandwidth Si_3N_4 Bragg gratings. Optics Express, 2015, 23, 30329.	1.7	24
164	How Do the Purcell Factor, the <i>Q</i> â€Factor, and the Beta Factor Affect the Laser Threshold?. Laser and Photonics Reviews, 2021, 15, 2000250.	4.4	24
165	Integrated Coherent Tunable Laser (ICTL) With Ultra-Wideband Wavelength Tuning and Sub-100 Hz Lorentzian Linewidth. Journal of Lightwave Technology, 2022, 40, 1802-1809.	2.7	24
166	100ÂGHz micrometer-compact broadband monolithic ITO Mach–Zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics, 2022, 11, 4001-4009.	2.9	24
167	Largeâ€scale quantum well domain structures. Journal of Applied Physics, 1988, 64, 5026-5029.	1.1	23
168	Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam. Optics Letters, 1990, 15, 1431.	1.7	22
169	Twoâ€photon absorption and nonresonant nonlinear index of refraction in the intersubband transitions in the quantum wells. Applied Physics Letters, 1993, 62, 126-128.	1.5	22
170	Cavity-enhaced and quasi-phase-matched optical frequency doublers in surface-emitting geometry. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1586.	0.9	22
171	Pulsed-laser vibrometer using photoelectromotive-force sensors. Applied Physics Letters, 2003, 83, 1893-1895.	1.5	22
172	Investigation of SOA Nonlinearities on the Amplification of DWDM Channels With Spectral Efficiency Up to 2.5 b/s/Hz. IEEE Photonics Technology Letters, 2004, 16, 918-920.	1.3	22
173	Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach. Applied Physics Letters, 2011, 98, .	1.5	22
174	Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors. Applied Physics Express, 2016, 9, 094101.	1.1	22
175	Comparative analysis of the intersubband versus bandâ€ŧoâ€band transitions in quantum wells. Applied Physics Letters, 1993, 62, 1390-1392.	1.5	21
176	Two-photon-induced fluorescence of biological markers based on optical fibers. Optics Letters, 1995, 20, 2054.	1.7	21
177	Guided-mode phonon-polaritons in suspended waveguides. Physical Review B, 2012, 86, .	1.1	21
178	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	1.6	21
179	On-Chip Ultrafast Plasmonic Graphene Hot Electron Bolometric Photodetector. ACS Omega, 2020, 5, 14711-14719.	1.6	21
180	Excitonic enhancement of two-photon absorption in semiconductor quantum-well structures. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1222.	0.9	20

#	Article	IF	CITATIONS
181	Reduced crosstalk semiconductor optical amplifiers based on Type-II quantum wells. IEEE Photonics Technology Letters, 2002, 14, 278-280.	1.3	20
182	Evidence of hot electrons generated from an AlNâ^•GaN high electron mobility transistor. Applied Physics Letters, 2008, 92, 013513.	1.5	20
183	Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles. Applied Physics Letters, 2009, 94, .	1.5	20
184	On the origin of nonlocal damping in plasmonic monomers and dimers. International Journal of Modern Physics B, 2017, 31, 1740005.	1.0	20
185	Power dissipation in slow light devices: a comparative analysis. Optics Letters, 2007, 32, 163.	1.7	19
186	Demonstration of a mode-conversion cavity add–drop filter. Optics Letters, 2011, 36, 2230.	1.7	19
187	Patients With Urinary Bladder Paragangliomas: A Compiled Case Series From a Literature Review for Clinical Management. Urology, 2015, 85, e25-e29.	0.5	19
188	Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica, 2021, 8, 563.	4.8	19
189	Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges. IEEE Journal of Quantum Electronics, 1995, 31, 1648-1658.	1.0	18
190	Compact linearized optical FM discriminator. IEEE Photonics Technology Letters, 2002, 14, 384-386.	1.3	18
191	Isotope disorder of phonons in GaN and its beneficial effect on high power field effect transistors. Applied Physics Letters, 2008, 93, 032110.	1.5	18
192	Third-order nonlinear plasmonic materials: Enhancement and limitations. Physical Review A, 2013, 88, .	1.0	18
193	Suspended photonic waveguide devices. Applied Optics, 2015, 54, F164.	2.1	18
194	Practical aspects of lasing without inversion in various media. IEEE Journal of Quantum Electronics, 1996, 32, 1882-1896.	1.0	17
195	Performance of nonlinear photonic crystal devices at high bit rates. Optics Letters, 2005, 30, 643.	1.7	17
196	Stokes and anti-Stokes resonant Raman scatterings from biased GaN/AlN heterostructure. Applied Physics Letters, 2008, 93, 051912.	1.5	17
197	Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration. Applied Physics Letters, 2014, 104, .	1.5	17
198	Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles. ACS Photonics, 2021, 8, 2041-2049.	3.2	17

#	Article	IF	CITATIONS
199	Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers. Optical Engineering, 2017, 57, 1.	0.5	17
200	Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells. Physical Review B, 1994, 50, 4463-4469.	1.1	16
201	Dispersion and anisotropy of optical rectification in zinc blende quantum wells. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2129.	0.9	16
202	A Low-Crosstalk Semiconductor Optical Amplifier. IEEE Photonics Technology Letters, 2004, 16, 392-394.	1.3	16
203	Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles. Optics Letters, 2012, 37, 1583.	1.7	16
204	Tunable Raman Selectivity via Randomization of a Rectangular Pattern of Nanodisks. ACS Photonics, 2014, 1, 1006-1012.	3.2	16
205	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	1.6	16
206	Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions. Optics Express, 2018, 26, 14201.	1.7	16
207	Observation of anomalously large blue shift of the heavyâ€hole photocurrent peak and optical bistability in narrow asymmetric coupled quantum wells. Applied Physics Letters, 1991, 59, 1025-1027.	1.5	15
208	Generation of tunable coherent far-infrared waves based on backward optical parametric oscillation in gallium selenide. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1567.	0.9	15
209	Permanent Dipole Contribution to the Linear Electro-optic Effect and Valence Band Dispersion in Zinc-Blende Semiconductors. Physical Review Letters, 1998, 81, 3777-3780.	2.9	15
210	Stimulated-emission-induced enhancement of the decay rate of longitudinal optical phonons in III–V semiconductors. Applied Physics Letters, 2002, 80, 2901-2903.	1.5	15
211	Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate. Applied Physics Letters, 2008, 93, 201107.	1.5	15
212	Enhancement of light absorption in a quantum well by surface plasmon polariton. Applied Physics Letters, 2009, 94, 191106.	1,5	15
213	Analysis of all-semiconductor intracavity optical parametric oscillators. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1726.	0.9	14
214	Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New Journal of Physics, 2012, 14, 105022.	1.2	14
215	Impact of surface collisions on enhancement and quenching of the luminescence near the metal nanoparticles. Optics Express, 2015, 23, 30739.	1.7	14
216	Plasmon-exciton coupling. Nanophotonics, 2019, 8, 513-516.	2.9	14

#	Article	IF	CITATIONS
217	Two photon confinedâ€ŧoâ€continuum intersubband transitions in the semiconductor heterostructures. Journal of Applied Physics, 1993, 73, 4367-4369.	1.1	13
218	Heterodyning far-infrared radiation using coherently controlled directional photocurrent in semiconductors. Applied Physics Letters, 1999, 74, 4-6.	1.5	13
219	High-precision measurement of optical frequency differences between Q-switched laser pulses using photo-electromotive-force sensors. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 177.	0.9	13
220	A Dispersion Management Scheme for Reducing SOA-Induced Crosstalk in WDM Links. Journal of Lightwave Technology, 2004, 22, 417-422.	2.7	13
221	Nonlinear all-optical GaNâ^•AlGaN multi-quantum-well devices for 100Gbâ^•s applications at λ=1.55μm. Applied Physics Letters, 2005, 87, 201108.	1.5	13
222	Add-drop filters based on mode-conversion cavities. Optics Letters, 2007, 32, 1253.	1.7	13
223	Passive mode locking of optical parametric oscillators: an efficient technique for generating sub-picosecond pulses. Optics Express, 2008, 16, 4804.	1.7	13
224	Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers. Optics Letters, 1988, 13, 603.	1.7	12
225	Excitonic electroabsorption in type II superlattices. Applied Physics Letters, 1992, 61, 1694-1696.	1.5	12
226	Optical frequency shifters based on cascaded second-order nonlinear processes. Optics Letters, 1996, 21, 558.	1.7	12
227	Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared. Optics Letters, 2008, 33, 2904.	1.7	12
228	Photoluminescence emission in deep ultraviolet region from GaN/AlN asymmetric-coupled quantum wells. Applied Physics Letters, 2010, 97, 021904.	1.5	12
229	Cathodoluminescence, gain, and stimulated emission in electronâ€beamâ€pumped ZnCdSe. Journal of Applied Physics, 1987, 61, 1606-1609.	1.1	11
230	Electroabsorption in the type II superlattices. Applied Physics Letters, 1992, 60, 1969-1971.	1.5	11
231	Practical aspects of optically coupled inversionless lasers. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 1249.	0.9	11
232	Generation of mid-infrared radiation in a highly absorbing nonlinear medium. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 340.	0.9	11
233	Anti-Stokes photoluminescence from n-type free-standing GaN at room temperature based on competition between phonon-assisted and two-photon absorption. Semiconductor Science and Technology, 2009, 24, 055010.	1.0	11
234	Super-resolution imaging via spatiotemporal frequency shifting and coherent detection. Optics Express, 2011, 19, 22350.	1.7	11

#	Article	IF	CITATIONS
235	Pliable polaritons: Wannier exciton-plasmon coupling in metal-semiconductor structures. Nanophotonics, 2019, 8, 629-639.	2.9	11
236	Solvent Responsive Selfâ€Folding of 3D Photosensitive Graphene Architectures. Advanced Intelligent Systems, 2023, 5, 2000195.	3.3	11
237	Optical phase conjugation and waveguide coupling by cascading transverse second-harmonic and difference-frequency generation in a vertical cavity. Optical and Quantum Electronics, 1996, 28, 1617-1627.	1.5	10
238	Evidence for strong spatially localized band-filling effects at interface islands. Applied Physics Letters, 1997, 71, 2581-2583.	1.5	10
239	Heterodyning scheme employing quantum interference. Applied Physics Letters, 1998, 73, 13-15.	1.5	10
240	Second-Order Nonlinearities and Optical Rectification. Semiconductors and Semimetals, 1998, , 1-82.	0.4	10
241	Design of Quantum-Dot Lasers With an Indirect Bandgap Short-Period Superlattice for Reducing the Linewidth Enhancement Factor. IEEE Photonics Technology Letters, 2004, 16, 2203-2205.	1.3	10
242	Quantum interference control of electrical currents and THz radiation in optically excited zinc-blende quantum wells. Physical Review B, 2006, 73, .	1.1	10
243	Phase and Polarization Diversity for Minimum MAI in OCDMA Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1386-1395.	1.9	10
244	Short Injector Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, 2010, 46, 591-600.	1.0	10
245	Enhanced electro-optic phase shifts in suspended waveguides. Optics Express, 2010, 18, 885.	1.7	10
246	Optimization of the nanolens consisting of coupled metal nanoparticles: An analytical approach. Applied Physics Letters, 2011, 98, 153115.	1.5	10
247	Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation. Optics Express, 2012, 20, 17600.	1.7	10
248	Landau Damping—The Ultimate Limit of Field Confinement and Enhancement in Plasmonic Structures. Springer Series in Solid-state Sciences, 2017, , 303-322.	0.3	10
249	Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna. ACS Photonics, 2017, 4, 1501-1505.	3.2	10
250	Electrical control of all-optical graphene switches. Optics Express, 2022, 30, 1950.	1.7	10
251	Landau Damping in Hybrid Plasmonics. Journal of Physical Chemistry Letters, 2022, 13, 997-1001.	2.1	10
252	Structural and electric-field-induced anisotropy in zinc-blende bulk semiconductors and quantum wells - the bonding orbital approach. Semiconductor Science and Technology, 1997, 12, 1378-1387.	1.0	9

#	Article	IF	CITATIONS
253	Transversely pumped counterpropagating optical parametric amplification and difference-frequency generation. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2161.	0.9	9
254	Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions. Optics Communications, 2013, 309, 85-89.	1.0	9
255	Linearized Bragg grating assisted electro-optic modulator. Optics Letters, 2014, 39, 6946.	1.7	9
256	Prospects and merits of metal-clad semiconductor lasers from nearly UV to far IR. Optics Express, 2015, 23, 4186.	1.7	9
257	Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter. Applied Physics Letters, 2016, 108, .	1.5	9
258	Enhancement of Two-Photon Absorption in Quantum Wells for Extremely Nondegenerate Photon Pairs. IEEE Journal of Quantum Electronics, 2016, 52, 1-14.	1.0	9
259	Room temperature continuous wave quantum dot cascade laser emitting at 72 μm. Optics Express, 2017, 25, 13807.	1.7	9
260	Study of Spatio-Temporal Character of Frequency Combs Generated by Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	1.9	9
261	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	1.6	9
262	Performance Analysis of Integrated Electro-Optic Phase Modulators Based on Emerging Materials. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	1.9	9
263	Single longitudinal mode operation of the electron-beam-pumped semiconductor laser. IEEE Journal of Quantum Electronics, 1986, 22, 1158-1161.	1.0	8
264	Threshold in electronâ€beam endâ€pumped IIâ€VI lasers. Journal of Applied Physics, 1987, 62, 2633-2639.	1.1	8
265	Self-phase modulation by means of resonant cascaded surface-emitting second-harmonic generation. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 275.	0.9	8
266	Effects of two-photon absorption in saturable Bragg reflectors used in femtosecond solid state lasers. Optics Express, 1997, 1, 68.	1.7	8
267	Observation of backward sum-frequency generation in periodically-poled lithium niobate. Optics Communications, 1998, 155, 323-326.	1.0	8
268	Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers. Applied Physics Letters, 1999, 75, 1374-1376.	1.5	8
269	Interferometer-less coherent optical range finder. Journal of Lightwave Technology, 2001, 19, 666-672.	2.7	8
270	Design of a GaNâ^•AlGaN intersubband Raman laser electrically tunable over the 3–5μm atmospheric transmission window. Journal of Applied Physics, 2006, 99, 033103.	1.1	8

#	Article	IF	CITATIONS
271	Transport and gain in a quantum cascade laser: model and equivalent circuit. Optical Engineering, 2010, 49, 111110.	0.5	8
272	The case for using gap plasmon-polaritons in second-order optical nonlinear processes. Optics Express, 2012, 20, 28717.	1.7	8
273	Mid-infrared light emission from a Fe2+:ZnSe polycrystal using quantum cascade laser pumping. Applied Physics Letters, 2014, 105, 141108.	1.5	8
274	Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier. Applied Physics Letters, 2015, 106, 032101.	1.5	8
275	Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury–cadmium–telluride linear array detection system. Applied Optics, 2016, 55, 9166.	2.1	8
276	Is metal a friend or foe?. Nature Materials, 2018, 17, 116-117.	13.3	8
277	Role of surface passivation in integrated sub-bandgap silicon photodetection. Optics Letters, 2020, 45, 2128.	1.7	8
278	Commercially Packaged Optical True-Time-Delay Devices With Record Delays of Wide Bandwidth Signals. , 2014, , .		8
279	Deterministic modeling of hybrid nonlinear effects in epsilon-near-zero thin films. Applied Physics Letters, 2022, 120, .	1.5	8
280	Influence of the Dispersion of the Size of the Si Nanocrystals on their Emission Spectra. Materials Research Society Symposia Proceedings, 1994, 358, 193.	0.1	7
281	Investigation of the temperature dependent recombination processes in periodic four-narrow-asymmetric-coupled-quantum-well structures. Journal of Luminescence, 1995, 63, 55-61.	1.5	7
282	Engineering of the nonradiative transition rates in modulation-doped multiple-quantum wells. IEEE Journal of Quantum Electronics, 1996, 32, 1155-1160.	1.0	7
283	Novel quantum box intersubband lasing mechanism based on image charges. Applied Physics Letters, 1996, 69, 1038-1040.	1.5	7
284	Directional couplers based on cascaded second-order nonlinearities in surface-emitting geometry. Optics Communications, 1997, 139, 63-68.	1.0	7
285	Cascaded Raman self-frequency shifted soliton generation in an Er/Yb-doped fiber amplifier. Applied Physics Letters, 2002, 81, 2695-2697.	1.5	7
286	Reductions of threshold for a mid-infrared optical parametric oscillator by an intracavity optical amplifier. Optics Letters, 2003, 28, 552.	1.7	7
287	Reducing Adjacent Channel Interference in RZ WDM Systems via Dispersion Interleaving. IEEE Photonics Technology Letters, 2004, 16, 915-917.	1.3	7
288	Stress-induced χ ⁽²⁾ in silicon — Comparison between theoretical and experimental values. , 2009, , .		7

#	Article	IF	CITATIONS
289	Eigen mode approach to the sub-wavelength imaging with surface plasmon polaritons. Applied Physics Letters, 2011, 98, .	1.5	7
290	SERS scaling rules. Applied Physics A: Materials Science and Processing, 2014, 117, 647-650.	1.1	7
291	Response to "Comment on â€~Graphene—A rather ordinary nonlinear optical material'―[Appl. Phys. Let 111, 106101 (2017)]. Applied Physics Letters, 2017, 111, .	tt. 1.5	7
292	Large-Area Arrays of Quasi-3D Au Nanostructures for Polarization-Selective Mid-Infrared Metasurfaces. ACS Applied Nano Materials, 2020, 3, 7029-7039.	2.4	7
293	All-optical linearized Mach-Zehnder modulator. Optics Express, 2021, 29, 37302.	1.7	7
294	Nonradiative recombination and saturation of traps in multiple intrinsic quantum wells. Journal of Applied Physics, 1994, 75, 1727-1732.	1.1	6
295	Linear and quadratic electrooptic effects in symmetric and asymmetric quantum-well structures. IEEE Journal of Quantum Electronics, 1995, 31, 219-227.	1.0	6
296	Two-photon transitions between bound-to-continuum states in AlGaAs/GaAs multiple quantum well. Applied Physics Letters, 1998, 73, 3638-3640.	1.5	6
297	Observation of an anomalously large blueshift of apparent donor–acceptor pair transition peak in compensation-doped quantum wells. Applied Physics Letters, 1998, 72, 534-536.	1.5	6
298	Modeling of Q-switched semiconductor lasers based on type-II quantum wells: Increasing the pulse energy and peak power. Applied Physics Letters, 2002, 80, 2631-2633.	1.5	6
299	Reduced threshold current of a quantum dot laser in a short period superlattice of indirect-band gap. Applied Physics Letters, 2004, 84, 3861-3863.	1.5	6
300	A model for optimization of the performance of frequency-Modulated DFB semiconductor laser. IEEE Journal of Quantum Electronics, 2005, 41, 473-482.	1.0	6
301	Band gap engineering for laser cooling of semiconductors. , 2006, , .		6
302	Phase and polarization diversity for OCDMA. , 2006, , .		6
303	Investigation of hot electrons and hot phonons generated within an AlN/GaN high electron mobility transistor. Laser Physics, 2009, 19, 745-751.	0.6	6
304	Linearized Ring-Assisted Electrooptical Modulator for Coherent Optical OFDM Links. IEEE Photonics Technology Letters, 2009, 21, 1621-1623.	1.3	6
305	High SFDR 'Super-Ring' microresonator based True-Time-Delay (TTD). , 2014, , .		6
306	Microelectromechanical control of the state of quantum cascade laser frequency combs. Applied Physics Letters, 2019, 115, 021105.	1.5	6

#	Article	IF	CITATIONS
307	Plasmonic Photovoltaic Double-Graphene Detector Integrated Into TiN Slot Waveguides. IEEE Photonics Journal, 2021, 13, 1-8.	1.0	6
308	Charge and field driven integrated optical modulators: comparative analysis: opinion. Optical Materials Express, 2022, 12, 1784.	1.6	6
309	On-chip low-loss all-optical MoSe ₂ modulator. Optics Letters, 2022, 47, 3640.	1.7	6
310	Demonstration of strong saturation of traps in multiple, narrow, slightly asymmetric coupled quantum wells. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 108.	0.9	5
311	Optically-induced Anderson delocalization transition in disordered systems. Optics Communications, 1995, 115, 466-470.	1.0	5
312	Resonant tunneling field-effect transistor based on wave function shape modulation in quantum wires. Journal of Applied Physics, 1999, 85, 3218-3221.	1.1	5
313	Displacement measurement that uses transient photoelectromotive force effects in CdTe:V with frequency-modulated lasers. Applied Optics, 2000, 39, 3138.	2.1	5
314	Phonon-pumped SiGe-Si interminiband terahertz laser. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 376-380.	1.9	5
315	Stimulated polariton scattering in intersubband lasers: Role of motional narrowing. Physical Review B, 2006, 74, .	1.1	5
316	Recent Advances in Coherent Optical OFDM High-Speed Transmission. , 2008, , .		5
317	Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride. Applied Physics Letters, 2015, 107, .	1.5	5
318	Linewidth of the laser optical frequency comb with arbitrary temporal profile. Applied Physics Letters, 2018, 113, 131104.	1.5	5
319	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	1.6	5
320	Non-reciprocal propagation versus non-reciprocal control. Nature Photonics, 2020, 14, 711-711.	15.6	5
321	Analytical expression for the width of quantum cascade laser frequency comb. Applied Physics Letters, 2020, 117, .	1.5	5
322	Spinâ€Polarized Electrons Impact on Terahertz Emission by Highâ€Order Shift Current in CsPbBr ₃ . Advanced Optical Materials, 2021, 9, 2100822.	3.6	5
323	Radiation-balanced tandem semiconductor/Yb ³⁺ :YLF lasers: feasibility study. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1886.	0.9	5
324	High-Performance All-Optical Modulator Based on Graphene-HBN Heterostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-8.	1.9	5

#	:	Article	IF	CITATIONS
3	25	Theoretical and experimental investigation of amplified spontaneous emission in electron-beam-pumped semiconductor lasers. IEEE Journal of Quantum Electronics, 1987, 23, 194-204.	1.0	4
3	26	Amplified spontaneous emission in electron-beam-pumped surface-emitting semiconductor lasers. Optical and Quantum Electronics, 1993, 25, 451-465.	1.5	4
3	27	Saturation of near-resonantï‡(3)(0;2ï‰,-ï‰,-ï‰) in quantum-confined semiconductors. Physical Review B, 1993, 48, 1607-1611.	1.1	4
3	28	Spatially localized band-gap renormalization and band-filling effects in three growth-interrupted multiple asymmetric coupled narrow quantum wells. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 536.	0.9	4
3	29	Balance equations and threshold conditions for the inversionless laser in an autoionizing system. Physical Review A, 1996, 54, 2451-2454.	1.0	4
3	30	Intersubband spin pump. Applied Physics Letters, 2006, 88, 123511.	1.5	4
3	31	Miniature, Linearized silicon photonics modulators for phased array systems. , 2013, , .		4
3	32	Sub-wavelength field enhancement in the mid-IR: photonics versus plasmonics versus phononics. Optics Letters, 2018, 43, 4465.	1.7	4
3	33	Attojoule Modulators for Photonic Neuromorphic Computing. , 2018, , .		4
3	34	THz field detection in graphene using deep neural networks. Applied Physics Letters, 2019, 115, .	1.5	4
3	35	High-Power, High-Linearity, Heterogeneously Integrated III-V on Si MZI Modulators for RF Photonics Systems. IEEE Photonics Journal, 2019, , 1-1.	1.0	4
3	36	Hot electron photoemission in metal–semiconductor structures aided by resonance tunneling. Applied Physics Letters, 2021, 118, .	1.5	4
3	37	Large Tunable Delay of an RF Photonic Signal with 130 GHz Bandwidth Using Silicon Microresonators. , 2010, , .		4
3	38	Integrated Coherent Tunable Laser (ICTL) with 118 nm Tuning Range and sub-100 Hz Lorentzian Linewidth. , 2021, , .		4
3	39	Feasibility of resonant Raman cooling and radiation balanced lasing in semiconductors. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 338.	0.9	4
34	40	Feasibility of phononâ€assisted electronic devices. Journal of Applied Physics, 1993, 74, 2562-2564.	1.1	3
34	41	Dynamic Wannier–Stark effect in semiconductor superlattices. Applied Physics Letters, 1994, 65, 3275-3277.	1.5	3
34	42	Exchange interactions in strained quantum dot arrays and possibility of engineering their magnetic properties. Superlattices and Microstructures, 1998, 24, 133-142.	1.4	3

#	Article	IF	CITATIONS
343	<title>Comparison of different optical methods of THz generation</title> . , 1999, 3624, 128.		3
344	Analysis of the performance of the quantum wire resonant tunneling field-effect transistor. Superlattices and Microstructures, 2000, 27, 245-254.	1.4	3
345	Cascaded waveguide phase-matching arrangement. Optics Letters, 2000, 25, 496.	1.7	3
346	Suppression of spurious intensity modulation in frequency-modulated semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1294-1299.	1.9	3
347	Analysis of phase locking in diffraction-coupled arrays of semiconductor lasers with gain/index coupling. IEEE Journal of Quantum Electronics, 2005, 41, 1065-1074.	1.0	3
348	High Spectral Efficiency Phase Diversity Coherent Optical CDMA with low MAI. , 2007, , .		3
349	PLASMONIC ENHANCEMENT OF OPTICAL PROPERTIES BY ISOLATED AND COUPLED METAL NANOPARTICLES. World Scientific Series in Nanoscience and Nanotechnology, 2011, , 1-44.	0.1	3
350	Measurement of Minority Carrier Lifetime in n-Type MBE HgCdTe on Variable Substrates. Journal of Electronic Materials, 2012, 41, 2785-2789.	1.0	3
351	Electronic states, pseudo-spin, and transport in the zinc-blende quantum wells and wires with vanishing band gap. Applied Physics Letters, 2014, 104, .	1.5	3
352	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
353	Nanophotonic waveguides for chip-scale raman spectroscopy: Theoretical considerations. Proceedings of SPIE, 2016, , .	0.8	3
354	Time, space, and spectral multiplexing for radiation balanced operation of semiconductor lasers. Optics Express, 2018, 26, 24124.	1.7	3
355	Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers. Optics Express, 2018, 26, 12985.	1.7	3
356	Plasmonic Photosensitizers: TiN@TiO 2 Core–Shell Nanoparticles as Plasmonâ€Enhanced Photosensitizers: The Role of Hot Electron Injection (Laser Photonics Rev. 14(5)/2020). Laser and Photonics Reviews, 2020, 14, 2070031.	4.4	3
357	Bandwidth Limitation in Slow Light Schemes. Optical Science and Engineering, 2008, , .	0.1	3
358	Temporal dynamics of strongly coupled epsilon near-zero plasmonic systems. Applied Physics Letters, 2021, 119, .	1.5	3
359	Room temperature plasmonic graphene hot electron bolometric photodetectors: A comparative analysis. Journal of Applied Physics, 2022, 131, .	1.1	3
360	Quantum onfined piezoelectric effect. Journal of Applied Physics, 1989, 66, 994-996.	1.1	2

#	Article	IF	CITATIONS
361	Longitudinal Coulomb attraction in coupled quantum wells. Physical Review B, 1992, 46, 12535-12541.	1.1	2
362	MIRRORLESS OPTICAL PARAMETRIC OSCILLATORS. Journal of Nonlinear Optical Physics and Materials, 1996, 05, 223-246.	1.1	2
363	Pressure and strain sensors based on intervalley electron transfer in AlGaAs. Applied Physics Letters, 1997, 70, 3437-3439.	1.5	2
364	Engineering of the nonradiative transition rates in nonpolar modulation-doped multiple quantum wells. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 1043.	0.9	2
365	Backward Second-harmonic Generation in Periodically-poled LiNbO_3. Optics and Photonics News, 1998, 9, 29.	0.4	2
366	Engineering of the magnetic properties of strained quantum dots. Applied Physics Letters, 1998, 73, 3944-3946.	1.5	2
367	Khurgin and Voisin Reply:. Physical Review Letters, 2000, 84, 4514-4514.	2.9	2
368	Displacement measurement with adjustable range by use of the photoelectromotive force effect and a frequency-modulated laser diode. Optics Letters, 2001, 26, 1170.	1.7	2
369	Acoustic cavity polariton in multilayer piezoelectric structures. Applied Physics Letters, 2002, 81, 4742-4744.	1.5	2
370	Optical phonons in a periodically inverted polar superlattice. Physical Review B, 2004, 70, .	1.1	2
371	Demonstration of high-spectral-efficiency 40-Gb/s optical communications system using 4 bits per symbol coding. , 2004, 5440, 371.		2
372	Observation of strong many-body effects in thin InN films grown on GaN buffer layers. , 2006, , .		2
373	Evidence of many-body, fermi-energy edge singularity in InN films grown on GaN buffer layers. , 2007, , .		2
374	Improving the efficiency of optical refrigeration of solids. , 2007, , .		2
375	Limits of luminescence efficiency enhancement by surface plasmon polaritons. , 2007, , .		2
376	MOCVD growth and regrowth of quantum cascade lasers. , 2007, , .		2
377	Pockels effect in short period silicon germanium superlattices. Optics Communications, 2010, 283, 432-434.	1.0	2
378	Practical silicon photonics True-Time-Delay devices for phased array systems. , 2011, , .		2

#	Article	IF	CITATIONS
379	Ultralow VÏ€L values in suspended quantum well waveguides. Applied Physics Letters, 2012, 101, 241111.	1.5	2
380	Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting. Applied Physics Letters, 2012, 100, 011101.	1.5	2
381	Experimental demonstration of coherent OCDMA using heterodyne detection. Optics Letters, 2013, 38, 2351.	1.7	2
382	Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers. Applied Physics Letters, 2014, 104, 251102.	1.5	2
383	Common Emitter Current and Voltage Gain in III-Nitride Tunneling Hot Electron Transistors. IEEE Electron Device Letters, 2015, 36, 436-438.	2.2	2
384	Nonrelativistic electron–electron MÃ,ller scattering in a nonadiabatic tunnel-ionizing surface plasmon field. Communications Physics, 2020, 3, .	2.0	2
385	Hot electron generation via internal surface photo-effect in structures with quantum well. , 2020, , .		2
386	Limitations to the Power Output and Efficiency of Mid-Infrared Quantum Cascade Lasers Imposed by Transport. , 2010, , .		2
387	Super-Ring Resonators: Taking Advantage of Resonance Variability. , 2012, , .		2
388	Linearized Silicon Modulator. , 2013, , .		2
389	Frequency doubling and phase matching with Il–VI microcrystals. Journal of Crystal Growth, 1990, 101, 748-753.	0.7	1
390	Intrinsic optical bistability in 'compensated' hetero-n-i-p-i superlattices. IEEE Journal of Quantum Electronics, 1990, 26, 876-882.	1.0	1
391	Strong excitonic nonlinearity in a P-I-N photodiode incorporating narrow asymmetric coupled quantum wells. Optics Letters, 1991, 16, 949.	1.7	1
392	Feasibility of the artificial ultrahigh mobility materials. Applied Physics Letters, 1994, 64, 208-210.	1.5	1
393	Switching of superradiance in semiconductor superlattices. Applied Physics Letters, 1995, 66, 3316-3318.	1.5	1
394	Spatial, temporal, and spectral effects and conversion efficiencies in second-harmonic generation from mode-locked lasers in surface-emitting geometry. Journal of Applied Physics, 1997, 82, 4732-4739.	1.1	1
395	Evidence of strong sequential band filling at interface islands in asymmetric coupled quantum wells. Superlattices and Microstructures, 1997, 22, 497-503.	1.4	1
396	Solid state spin-flip terahertz maser. Superlattices and Microstructures, 1997, 22, 551-557.	1.4	1

#	Article	IF	CITATIONS
397	Intersubband lasers based on the subband dispersion of inverted mass. Optics Express, 1998, 2, 143.	1.7	1
398	Artificial ferroelectricity in coupled strained quantum dots. Applied Physics Letters, 1998, 73, 3102-3104.	1.5	1
399	Damage mechanisms for KTiOPO 4 crystals under irradiation of a cw argon laser. , 1999, 3610, 9.		1
400	Slow Light: Fundamentals & Applications. , 2006, , CThD3.		1
401	High sensitivity pulsed laser vibrometer for surface vibration monitoring. , 2006, , .		1
402	Design of a GaN/AlGaN intersubband Raman laser electrically tunable over the 3∼5 μm atmospheric transmission window. , 2006, , .		1
403	Biological Life Signs Detection Using High Sensitivity Pulsed Laser Vibrometer. , 2007, , .		1
404	Design of GeSiSn/Ge quantum cascase laser. , 2008, , .		1
405	Intersubband Absorption Loss in High-Performance Mid-Infrared Quantum Cascade Lasers. , 2009, , .		1
406	Periodically poled silicon. , 2010, , .		1
407	Temperature Dependence of the Transparency Current Density in Mid-Infrared Quantum Cascade Lasers. , 2011, , .		1
408	An Optically Pumped Phonon Laser in a Silicon Micromechanical Oscillator. , 2011, , .		1
409	Coherent OCDMA receivers with robust performance. , 2011, , .		1
410	Experimental Demonstration of Coherent OCDMA using Spectral Line Pairing and Heterodyne Detection. , 2013, , .		1
411	Evanescent Field Absorption Spectroscopy of Trace Gases Using Functionalized Microring Resonators. , 2013, , .		1
412	Hybrid III-V/Si MZI modulators for high SFDR analog links and systems. , 2016, , .		1
413	Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays. , 2016, , .		1
414	Electrically-driven optical antennas enabled by mesoscopic contacts. , 2017, , .		1

24

#	Article	IF	CITATIONS
415	Nonlocality in Plasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 67-113.	0.1	1
416	New approaches to electrically driven nanoantennas. , 2017, , .		1
417	Ultra-low Noise Widely-Tunable Semiconductor Lasers Fully Integrated on Silicon. , 2019, , .		1
418	III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA). , 2020, , 109-157.		1
419	Plasmons compressing the light– a jewel in the treasure chest of Mark Stockman's legacy. Nanophotonics, 2021, .	2.9	1
420	Performance of Single and Coupled Microresonators in Photonic Switching Schemes. Springer Series in Optical Sciences, 2010, , 227-251.	0.5	1
421	Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation). , 2018, , .		1
422	What are the merits of hyperbolic metamaterials?. , 2016, , .		1
423	Impact of Landau Damping on Field Enhancement in Plasmonic Dimers. , 2017, , .		1
424	Waveguides operating in the restrahlen band. , 2008, , .		1
425	Sequences for Impairment Mitigation in Coherent SPE-OCDMA. , 2011, , .		1
426	Eigen mode Approach to the Sub-wavelength Imaging with Surface Plasmon Polaritons. , 2011, , .		1
427	Wide Bandwidth, Nonmagnetic Linear Optical Isolators based on Frequency Conversion. , 2019, , .		1
428	On-chip ultrafast plasmonic graphene photodetectors. , 2020, , .		1
429	Ultrafast laser probing in asymmetric quantum well structures placed in transverse magnetic field. , 1990, , .		0
430	<title>Longitudinal Coulomb attraction in coupled quantum wells</title> . , 1990, , .		0
	Response to â€~â€~Comment on â€~Optical bistability in selfâ€electroâ€optic effect devices with asymmetric		

quantum wells' and on †Novel configuration of selfâ€electroâ€optic effect device based on asymmetric

#	Article	IF	CITATIONS
433	<title>Electroabsorption in the type II superlattices</title> . , 1992, , .		0
434	Carrier filtering in type II superlattices. Solid State Communications, 1993, 85, 535-538.	0.9	0
435	Active antireflection coating electrooptic modulator. Optical and Quantum Electronics, 1993, 25, S917-S923.	1.5	0
436	Microwave-developed three-dimensional real-time holography. Optics Letters, 1993, 18, 1855.	1.7	0
437	<title>Optical rectification and terahertz emission in the semiconductors excited above the bandgap</title> . , 1994, 2142, 231.		0
438	Optically pumped intersubband electron Raman lasers. , 1996, 2886, 20.		0
439	Intersubband lasing in silicon-based multiple quantum wells. Proceedings of SPIE, 1996, 2886, 198.	0.8	0
440	Autocorrelation of mode-locked laser pulses based on the synchronous drift of photogenerated carriers. Applied Physics Letters, 1997, 71, 1765-1767.	1.5	0
441	Single-Fiber Two-Photon Fluoroprobe for Biological Markers. Journal of Nonlinear Optical Physics and Materials, 1997, 06, 305-311.	1.1	0
442	Spatially-Localized Band-Filling Effects and Band-Gap Renormalization in Growth-Interrupted Quantum Wells. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 73-103.	1.1	0
443	Generation of blue light by frequency doubling in periodically poled bulk and waveguide KTP. , 1998, 3491, 219.		0
444	Valence intersubband lasers without total population inversion based on the inverted mass. , 1998, , .		0
445	Surface-emitting second harmonic generation from short laser pulses. , 1998, 3277, 226.		0
446	Large optical parametric amplification and efficient difference-frequency generation in transverse-pumping geometry. , 1998, , .		0
447	<title>Efficient generation and amplification of temporally coherent and narrow-linewidth terahertz waves based on parametric processes</title> . , 1999, , .		0
448	<title>New methods of frequency conversion in nonlinear waveguides</title> . , 2000, 3940, 159.		0
449	<title>Design, growth, and characterization of GaAs/AlAs type-II superlattices</title> . , 2002, , .		0

450 Gamma-X band mixing in GaAs/AlAs superlattice. , 2003, 5260, 257.

0

#	Article	IF	CITATIONS
451	Mid-IR optical limiter based on type-II quantum wells. IEEE Journal of Quantum Electronics, 2004, 40, 1490-1499.	1.0	0
452	A comparative study of InAs quantum dot lasers with barriers of direct and indirect band gaps. Microelectronics Journal, 2005, 36, 183-185.	1.1	0
453	Surface enhanced Raman clucose detection using gold nanoshells. , 2006, , .		0
454	Nonlinear slow light at high bit rates. , 2006, , .		0
455	Performance limits of delay lines based on optical amplifiers. , 2006, , .		0
456	Measurement of the lifetimes of photo-excited carriers in type-I and type-II quantum well materials. , 2006, , .		0
457	Observation of random lasing in gold-silica nanoshell/water solution. , 2006, , .		0
458	Enhancement of luminescence efficiency using surface plasmon polaritons. , 2007, , .		0
459	Anti-Stokes Raman scattering of photoluminescence phonon replica in gan heterostructures: An effective technique for Probing Hot Phonons. , 2007, , .		0
460	Add-drop filters based on mode conversion cavities. , 2007, , .		0
461	Stimulated Polariton Scattering in Intersubband Lasers - Role of Motional Narrowing. , 2007, , .		0
462	Absolute Surface Displacement Measurement using Pulsed Photo-Electromotive-Force Laser Vibrometer. , 2007, , .		0
463	Improvement of the efficiency of laser cooling using type II multiple QW's. , 2007, , .		0
464	Micromachined Quantum-Well Air-Clad Waveguides. , 2007, , .		0
465	Mitigating hot phonons in high power optoelectronic devices based on wide gap semiconductors. , 2007, , .		0
466	Absolute surface displacement measurement using pulsed photo-electromotive-force laser vibrometer. , 2007, , .		0
467	High spectral efficiency phase diversity coherent optical CDMA with low MAI. , 2007, , .		0
468	Coherent Optical CDMA with low MAI. , 2007, , .		0

Coherent Optical CDMA with low MAI. , 2007, , . 468

#	Article	IF	CITATIONS
469	Passively mode-locked slow pump optical parametric oscillators. Optics Letters, 2008, 33, 153.	1.7	0
470	Add-drop filters based on mode conversion Bragg grating cavities. , 2008, , .		0
471	Group-IV quantum cascase laser operating in the L-valleys. , 2008, , .		0
472	Photoluminescence Enhancement by Metal Nanoparticles. , 2009, , .		0
473	Negative Differential Resistance and Pulse Instabilities in Minimalized Quantum Cascade Laser Structures. , 2009, , .		0
474	Pockels Effect in Short Period Silicon Germanium Superlattices. , 2009, , .		0
475	Spontaneous Raman Scattering in Suspended InGaAsP Waveguides. , 2009, , .		0
476	Intersubband raman lasers: A new insight. , 2009, , .		0
477	Enhanced electro-optic effects in suspended rib waveguides. , 2009, , .		0
478	X-ray diffraction analysis of quantum cascdse lasers. , 2009, , .		0
479	Large bandwidth continuously tunable delay using silicon microring resonators. , 2009, , .		0
480	Practical limits of optical enhancement by metal nanoparticles. , 2009, , .		0
481	Anti-Stokes photoluminescence in GaN single crystals and heterostructures. Proceedings of SPIE, 2009, , .	0.8	0
482	Interface Roughness Broadening in Intersubband Lasers: Homogeneous or Not?. , 2009, , .		0
483	Enhancement of optical emission and absorption by metal nanoparticles. Proceedings of SPIE, 2010, , .	0.8	0
484	Luminescence Quenching due to High-Order Surface Plasmon Modes of Metal Nanoparticles. , 2010, , .		0
485	Impact of High-Order Surface Plasmon Modes of Metal Nanoparticles on Emission Enhancement. , 2010, , .		0

#	Article	IF	CITATIONS
487	Enhancement of Optical Emission by Coupled Metal Nanoparticles. , 2011, , .		0
488	Robustness of Coherent SPE-OCDMA to Combined Dispersion Impairments. , 2011, , .		0
489	Polarization Dependence of Facet Reflectivity in Rectangular Submicron Waveguides. , 2011, , .		0
490	Locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths. , 2011, , .		0
491	Spectral line pairing for heterodyne OCDMA. , 2011, , .		0
492	Second order nonlinear optics with long range surface plasmon polaritons. , 2011, , .		0
493	Robotic-assisted laparoscopic surgery in pediatric urology: an update. Turk Uroloji Dergisi, 2012, 38, 102-111.	0.4	0
494	Analytical Model of Raman Enhancement by Metal Nanoparticles. Materials Research Society Symposia Proceedings, 2012, 1404, 102.	0.1	0
495	Photoluminescence in a Fe2+ Doped ZnSe Crystal Using Near Absorption Edge Quantum Cascade Laser Pumping. , 2012, , .		0
496	Analytical Modeling of Quantum Cascade Lasers: A Study of the Transport and Lasing Characteristics. , 2012, , .		0
497	Second Order Nonlinear Optics with Surface Plasmon Polaritons Gap Waveguides. , 2012, , .		0
498	Silicon-metal waveguide as a high efficiency Schottky detector for telecom wavelengths. , 2012, , .		0
499	Analytical Comparison of Raman and Photoluminescence Enhancement by Metal Nanoparticles. , 2012, ,		0
500	Compensating the loss in the plasmonic waveguides and feasibility of sub-wavelength plasmonic lasers. , 2012, , .		0
501	Laser cooling based on nitride structures. , 2013, , .		0
502	Simulation and experimental demonstration of coherent OCDMA using spectral line pairing and heterodyne detection. , 2013, , .		0
503	Second-order Nonlinear Processes using Gap Plasmon-Polaritons. , 2013, , .		0
504	Explaining the Giant Difference in Surface Plasmon Enhancement of Fluorescence, Resonance and Non-Resonance Raman Scattering. , 2013, , .		0

#	Article	IF	CITATIONS
505	Plasmonic enhancement of third order nonlinear optical effects: Figures of merit. , 2013, , .		0
506	Analytical model for luminescence enhancement by metal nanoparticles. , 2013, , .		0
507	Limits of Plasmonic Enhancement of Third Order Nonlinear Optical Effects. , 2013, , .		0
508	SPASER versus SPED., 2013, , .		0
509	Feasibility of GaN-based room temperature THz laser in a spoof plasmon waveguide. Proceedings of SPIE, 2014, , .	0.8	0
510	Dealing with Loss in Plasmonics and Metamaterials. , 2014, , .		0
511	Plasmonic Enhanced Near IR Schottky Detectors Based on Internal Photoemission in Nano Pyramids. , 2014, , .		0
512	Feasibility of spoof surface plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser. Materials Research Society Symposia Proceedings, 2014, 1661, 13.	0.1	0
513	Hyperbolic metamaterials: Kronig Penney approach (presentation video). , 2014, , .		Ο
514	Scaling rules for Surface Enhanced Raman Scattering. , 2014, , .		0
515	An experimental and theoretical comparison of different narrow linewidth bragg gratings. , 2015, , .		Ο
516	Density-dependent electron transport for accurate modeling of AlGaN/GaN HEMTs. , 2015, , .		0
517	Combined microphone array and lock-in amplifier operations for outdoor photo-acoustic sensing. Proceedings of SPIE, 2015, , .	0.8	0
518	Modeling and experimental demonstration of sub-10 nm base III-nitride tunneling hot electron transistors. , 2015, , .		0
519	Finding a proper place for photons in the world full of electrons and their spins. , 2016, , .		Ο
520	Replacing metals with alternative plasmonic substances in plasmonics and metamaterials: Is it a good idea?. , 2016, , .		0
521	Nanoscale constriction as a source of plasmons for plasmonic nanocircuitries. , 2016, , .		0
522	Metal mesoscopic contact as a source of plasmons for plasmonic nanocircuitries. , 2016, , .		0

#	Article	IF	CITATIONS
523	Time domain model for Quantum Cascade lasers generating frequency combs via stochastic frequency modulation. , 2017, , .		0
524	Tunable optical delay line based on Si <inf>3</inf> N <inf>4</inf> ring resonators. , 2017, , .		0
525	High-Power, High-SFDR, Heterogeneously Integrated III-V on Si MZI Modulators. , 2018, , .		Ο
526	Widely Tunable Si <inf>3</inf> N <inf>4</inf> Triple-Ring and Quad-Ring Resonator Laser Reflectors and Filters. , 2018, , .		0
527	The Role of Surface Roughness in Plasmonically Assisted Internal Photoemission Schottky Photodetectors. , 2018, , .		Ο
528	Reflections on Mark Stockman and his contributions to nano-optics: guest editorial. Optical Materials Express, 2021, 11, 1575.	1.6	0
529	Emerging Materials Based Electro-Optic Phase Modulators. , 2021, , .		Ο
530	Phase-locking and -divergence in mutually trapped orthogonally polarized solitons. , 2001, , .		0
531	Frequency Domain Investigation of Passively Mode-Locked Lasers with Intra-cavity Frequency Conversion. , 2001, , .		Ο
532	Comparative Analysis of Linear and Nonlinear Devices based on Slow Waves in Periodic Photonic Structures and in EIT Media. , 2004, , .		0
533	Slow Waves in Linear and Nonlinear Photonic Crystal Waveguides –Figures of Merit , 2004, , .		Ο
534	Excited-state absorption in high-power mid-infrared quantum cascade lasers. , 2008, , .		0
535	Design of Suspended AlGaAs waveguides for tunable difference frequency generation in mid-IR. , 2009, ,		Ο
536	Enhanced Electro-Optic Effects in Suspended Waveguides. , 2009, , .		0
537	Impact of Disorder on Surface Plasmons in Two-Dimensional Arrays of Metal Nanoparticles. , 2009, , .		Ο
538	Microresonators for Optical Switching: Single versus Multiple Coupled. , 2009, , .		0
539	Observation of Anti-Stokes Fluorescence from GaN Film Grown on Si (111) Substrate. , 2009, , .		0
540	Practical Limits of Absorption Enhancement near Metal Nanoparticles. , 2009, , .		0

#	Article	IF	CITATIONS
541	Quantum Cascade Lasers with Ultra-Strong Coupling Injection. , 2009, , .		Ο
542	Super-Resolution Imaging Using Spatial Fourier Transform Infrared Spectroscopy. , 2009, , .		0
543	Role of Interface Roughness in the Transport and Lasing Characteristics of Quantum-Cascade lasers. , 2009, , .		0
544	Stark Effect Induced by Photogenerated Carriers in Multiple GaN/AlN Asymmetric Coupled Quantum Wells. , 2009, , .		0
545	Super-Resolution Fingerprinting in the Far Field. , 2010, , .		0
546	The Guided-Mode Phonon-Polariton in Suspended Waveguides. , 2010, , .		0
547	Coupled-Mode Theory of Plasmonic Field Enhancement in Complex Metal Nanostructures. , 2010, , .		0
548	Photoluminescence Quenching Due to Relocation of Electrons in GaN/AlN Asymmetric-Coupled Quantum Wells. , 2010, , .		0
549	Optical Add-Drop Filter Design Incorporating Mode Conversion in a Shifted Grating Cavity. , 2010, , .		0
550	Locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths. , 2011, , .		0
551	Ultra-Low VÏ€ Suspended Quantum Well Waveguides. , 2012, , .		0
552	Engineering the Intersubband Lifetime with Interface Roughness in Quantum Cascade Lasers. , 2012, , .		0
553	Laser Cooling of GaN Based on Anti-Stokes Raman Scattering. , 2012, , .		0
554	Mid-Infrared Difference-Frequency Generation in Suspended GaAs Waveguides. , 2013, , .		0
555	Photoluminescence Characteristics of Fe2+ Doped ZnSe Polycrystal with Quantum Cascade Laser Pumping. , 2013, , .		0
556	Investigation of Hot Photons in GaN/AIN High Electron Mobility Transistor Based on Stokes Raman Scattering. , 2014, , .		0
557	Mid-Infrared Difference-Frequency Generation in Suspended GaAs Waveguides. , 2014, , .		0

0

#	Article	IF	CITATIONS
559	Heterodyning Scheme Employing Quantum Interference. , 1999, , 203-212.		Ο
560	First Observation of High-order Quasi-phase-matched Second-harmonic Generation in Semiconductor Multilayers in Reflection Geometry. , 1999, , .		0
561	Observation of anomalously large blueshift of donor-acceptor pair transition peak in GaAs/AlGaAs coupled quantum wells with low residual impurity densities. , 1999, , .		0
562	Hot Electron Schottky Detection Based on Internal Photoemission in Silicon Structures. , 2015, , .		0
563	Extremely Nondegenerate Two-photon Absorption Enhancement in Quantum Well (QW) Semiconductors. , 2015, , .		0
564	Trace-Gas Raman Spectroscopy Using Functionalized Waveguides. , 2016, , .		0
565	Non-Destructive Inspection using Phase-Shifting Resonant Vibrometry. , 2016, , .		0
566	Ultrafast Thermal Nonlinearity. , 2016, , .		0
567	Limits of plasmonic enhancement: what if the metal becomes $\hat{a} \in \hat{lpha}$ lossless $\hat{a} \in \hat{\label{eq:alpha}}$, 2016, , .		0
568	Plasmonic enhance schottky detector for the mid-IR. , 2016, , .		0
569	Imaging with multilayer hyperbolic metamaterials $\hat{a} \in \hat{~}$ what are the limits?. , 2017, , .		0
570	Near-Infrared Waveguide-Enhanced Raman Spectroscopy of Trace Gases. , 2017, , .		0
571	Time domain analysis of self-frequency modulated combs in quantum cascade lasers. , 2017, , .		0
572	Do Low-loss Doped Semiconductor Nanoparticles Yield Stronger Field Enhancement?. , 2017, , .		0
573	Sub-wavelength field enhancement in mid-IR: Photonics vs Plasmonics vs Phononics. , 2018, , .		0
574	The Role of Spatial and Spectral Hole Burning in QCL Frequency Comb Formation. , 2018, , .		0
575	Optomechanical Control of the State of Chip-Scale Frequency Combs. , 2019, , .		0
576	Efficient Graphene Based Ultrafast Field Detector Using Very Slow Electronics. , 2019, , .		0

#	Article	IF	CITATIONS
577	Flexible Polaritons: Wannier Exciton-Plasmon Coupling in Metal-Semiconductor Structures. , 2019, , .		0
578	Hot carriers generated by plasmons: where they are born, where they are going and how they die , 2019, , .		0
579	Nonlinear and electro-optical properties of epsilon near zero materials: are they all they are believed to be?. , 2019, , .		0
580	Optomechanical control of quantum cascade laser frequency combs. , 2019, , .		0
581	Mitigating offset frequency drift in frequency combs using a customized power law dispersion. Optics Letters, 2020, 45, 3525.	1.7	0
582	Optical modification of cavity-antenna plasmonic nanostructures for brighter and faster single-photon emission. , 2020, , .		0
583	TiN@TiO2 Core-Shell Nanoparticles as Plasmon-Enhanced Photosensitizers for Photocatalysis. , 2020, ,		0
584	Enhancing the performance of coupled cavity-antenna plasmonic nanostructures for ultrafast quantum photonics. , 2020, , .		0
585	A simple technique for evaluating dipole moments of Bloch states in tetrahedral semiconductors. AIP Advances, 2022, 12, 075018.	0.6	Ο