Francesco Marzari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7527828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau. Nature Astronomy, 2022, 6, 232-240.	4.2	40
2	Dust Resurgence in Protoplanetary Disks Due to Planetesimal–Planet Interactions. Astrophysical Journal Letters, 2022, 927, L22.	3.0	6
3	Planet–planet scattering in presence of a companion star. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5050-5061.	1.6	2
4	Dynamical Evolution of Ejecta from the DART Impact on Dimorphos. Planetary Science Journal, 2022, 3, 118.	1.5	17
5	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 645, A71.	2.1	25
6	Observational constraints to the dynamics of dust particles in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4687-4705.	1.6	5
7	Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3810-3830.	1.6	18
8	Second-generation dust in planetary systems: the case of HDÂ163296. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3181-3193.	1.6	3
9	Martian Ice Revealed by Modeling of Simple Terraced Crater Formation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006108.	1.5	1
10	Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 636, A91.	2.1	13
11	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	47
12	Secular evolution of close-in planets: the effects of general relativity. Monthly Notices of the Royal Astronomical Society, 2020, 493, 427-436.	1.6	3
13	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 639, A50.	2.1	9
14	Ring dynamics around an oblate body with an inclined satellite: the case of Haumea. Astronomy and Astrophysics, 2020, 643, A67.	2.1	4
15	Evolution of an Asteroid Family under YORP, Yarkovsky, and Collisions. Astronomical Journal, 2020, 160, 128.	1.9	9
16	Dust distribution around low-mass planets on converging orbits. Astronomy and Astrophysics, 2020, 641, A125.	2.1	3
17	Planets in Binaries: Formation and Dynamical Evolution. Galaxies, 2019, 7, 84.	1.1	28
18	Dust-to-gas Ratio Resurgence in Circumstellar Disks Due to the Formation of Giant Planets: The Case of HD 163296. Astrophysical Journal. 2019. 877. 50.	1.6	15

#	Article	IF	CITATIONS
19	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	1.6	9
20	Circumstellar Dust Distribution in Systems with Two Planets in Resonance. Astronomical Journal, 2019, 157, 45.	1.9	8
21	Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.	5.4	22
22	Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A8.	2.1	7
23	Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 2019, 630, A11.	2.1	1
24	Influence of general-relativity effects, dynamical tides, and collisions on planet–planet scattering close to the star. Astronomy and Astrophysics, 2019, 625, A121.	2.1	6
25	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	2.1	15
26	Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.	2.1	4
27	Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A7.	2.1	18
28	The Rocky‣ike Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2019, 46, 14336-14346.	1.5	9
29	The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.	1.6	20
30	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. Icarus, 2018, 311, 1-22.	1.1	21
31	SPOTS: The Search for Planets Orbiting Two Stars. Astronomy and Astrophysics, 2018, 619, A43.	2.1	22
32	Shifting of the resonance location for planets embedded in circumstellar disks. Astronomy and Astrophysics, 2018, 611, A37.	2.1	8
33	High-contrast study of the candidate planets and protoplanetary disk around HD 100546. Astronomy and Astrophysics, 2018, 619, A160.	2.1	34
34	Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.	1.9	20
35	Exploring the realm of scaled solar system analogues with HARPS. Astronomy and Astrophysics, 2018, 615, A175.	2.1	29
36	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	2.1	40

#	Article	IF	CITATIONS
37	Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.	4.2	19
38	Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model. Planetary and Space Science, 2018, 164, 19-36.	0.9	32
39	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	2.1	15
40	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	1.6	7
41	Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.	2.1	11
42	Is the Linné impact crater morphology influenced by the rheological layering on the Moon's surface? Insights from numerical modeling. Meteoritics and Planetary Science, 2017, 52, 1388-1411.	0.7	5
43	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	6.0	63
44	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	4.2	100
45	Asteroidal and cometary dust flux in the inner solar system. Astronomy and Astrophysics, 2017, 605, A94.	2.1	24
46	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	13.7	179
47	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 602, A107.	2.1	185
48	Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S178-S185.	1.6	12
49	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	1.6	33
50	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	1.6	44
51	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	1.6	43
52	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	1.6	39
53	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.	1.6	12
54	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	1.6	8

#	Article	IF	CITATIONS
55	Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S731-S740.	1.6	23
56	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	1.6	22
57	Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S195-S203.	1.6	17
58	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	2.1	107
59	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 599, A90.	2.1	9
60	Statistical analysis of the flux of micrometeoroids at Mercury from both cometary and asteroidal components <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2016, 588, C3.	2.1	3
61	Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.	1.6	52
62	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders a‰¥7 m. Astronomy and Astrophysics, 2016, 592, L2.	2.1	27
63	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	2.1	55
64	Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S533-S546.	1.6	34
65	Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462, S57-S66.	1.6	23
66	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	2.1	102
67	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	2.1	53
68	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	2.1	34
69	Stability of multiplanet systems in binaries. Astronomy and Astrophysics, 2016, 594, A89.	2.1	14
70	Statistical analysis of the flux of micrometeoroids at Mercury from both cometary and asteroidal components. Astronomy and Astrophysics, 2016, 585, A106.	2.1	8
71	The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.	1.1	252
72	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	1.6	158

#	Article	IF	CITATIONS
73	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	1.6	60
74	Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S287-S303.	1.6	26
75	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	6.0	97
76	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	1.6	23
77	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
78	Pericenter precession induced by a circumstellar disk on the orbit of massive bodies: comparison between analytical predictions and numerical results. Astronomy and Astrophysics, 2016, 589, A133.	2.1	10
79	Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis. Icarus, 2016, 277, 381-394.	1.1	15
80	DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco*. Astrophysical Journal Letters, 2016, 816, L1.	3.0	24
81	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	2.1	67
82	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	2.1	188
83	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	2.1	149
84	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	2.1	173
85	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	2.1	188
86	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	2.1	153
87	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	2.1	59
88	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	2.1	108
89	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	2.1	60
90	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	1.5	71

#	Article	IF	CITATIONS
91	The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. Astronomy and Astrophysics, 2015, 576, A133.	2.1	50
92	Decoupling of a giant planet from its disk in an inclined binary system. Astronomy and Astrophysics, 2015, 583, A133.	2.1	23
93	Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A14.	2.1	26
94	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	6.0	310
95	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	6.0	366
96	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	6.0	259
97	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	13.7	158
98	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	13.7	141
99	The GAPS programme with HARPS-N at TNC. Astronomy and Astrophysics, 2015, 583, A135.	2.1	50
100	The Complex History of Trojan Asteroids. , 2015, , .		12
101	Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disk's damping effects. Astronomy and Astrophysics, 2014, 564, A28.	2.1	17
102	Dynamical behaviour of multiplanet systems close to their stability limit. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1110-1116.	1.6	47
103	Impact of planet–planet scattering on the formation and survival of debris discs. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1419-1424.	1.6	15
104	Neptune and Triton: Essential pieces of the Solar System puzzle. Planetary and Space Science, 2014, 104, 108-121.	0.9	34
105	SPOTS: The Search for Planets Orbiting Two Stars. Astronomy and Astrophysics, 2014, 572, A91.	2.1	25
106	TRADES: A new software to derive orbital parameters from observed transit times and radial velocities. Astronomy and Astrophysics, 2014, 571, A38.	2.1	40
107	Long term stability of Earth Trojans. Celestial Mechanics and Dynamical Astronomy, 2013, 117, 91-100.	0.5	45
108	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2013, 554, A28.	2.1	103

#	Article	IF	CITATIONS
109	Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler–16 system. Astronomy and Astrophysics, 2013, 553, A71.	2.1	46
110	LBT observations of the HR 8799 planetary system. Astronomy and Astrophysics, 2013, 549, A52.	2.1	62
111	Circumstellar disks do erase the effects of stellar flybys on planetary systems. Astronomy and Astrophysics, 2013, 550, A64.	2.1	9
112	Three-dimensional modeling of radiative disks in binaries. Astronomy and Astrophysics, 2013, 556, A148.	2.1	24
113	OUTWARD MIGRATION OF JUPITER AND SATURN IN EVOLVED GASEOUS DISKS. Astrophysical Journal, 2012, 757, 50.	1.6	83
114	Trojans' Odyssey: Unveiling the early history of the Solar System. Experimental Astronomy, 2012, 33, 685-721.	1.6	3
115	Search for satellites near (21) Lutetia using OSIRIS/Rosetta images. Planetary and Space Science, 2012, 66, 64-70.	0.9	6
116	Hydrocode simulations of the largest crater on asteroid Lutetia. Planetary and Space Science, 2012, 66, 147-154.	0.9	14
117	Interstellar medium perturbations on transport-dominated debris discs in binary star systems. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3431-3442.	1.6	4
118	Eccentricity of radiative disks in close binary-star systems. Astronomy and Astrophysics, 2012, 539, A98.	2.1	31
119	A giant planet in the triple system HDÂ132563. Astronomy and Astrophysics, 2011, 533, A90.	2.1	27
120	On how optical depth tunes the effects of the interstellar medium on debris discs. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1890-1899.	1.6	34
121	Combined effect of YORP and collisions on the rotation rate of small Main Belt asteroids. Icarus, 2011, 214, 622-631.	1.1	45
122	Planet–planet scattering in circumstellar gas disks. Astronomy and Astrophysics, 2010, 514, L4.	2.1	36
123	Effects of interplanetary dust on the LISA drag-free constellation. Celestial Mechanics and Dynamical Astronomy, 2010, 107, 255-264.	0.5	1
124	Planet formation: is it good or bad to have a stellar companion?. EAS Publications Series, 2010, 42, 239-253.	0.3	0
125	The SARG Planet Search. EAS Publications Series, 2010, 42, 117-124.	0.3	0
126	Debris discs in binaries: a numerical study. Astronomy and Astrophysics, 2010, 524, A13.	2.1	22

8

#	Article	IF	CITATIONS
127	INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK. Astrophysical Journal, 2009, 705, 1575-1583.	1.6	46
128	Dynamical stability of the inner belt around Epsilon Eridani. Astronomy and Astrophysics, 2009, 499, L13-L16.	2.1	7
129	On the eccentricity of self-gravitating circumstellar disks in eccentric binary systems. Astronomy and Astrophysics, 2009, 508, 1493-1502.	2.1	47
130	Planet formation in the habitable zone of α Centauri B. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 393, L21-L25.	1.2	69
131	Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics and Planetary Science, 2009, 44, 327-342.	0.7	28
132	Statistical analysis of micrometeoroids flux on Mercury. Astronomy and Astrophysics, 2009, 503, 259-264.	2.1	54
133	Stable chaos in the 55Cnc exoplanetary system?. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 389, L1-L3.	1.2	28
134	Planet formation in α Centauri A revisited: not so accretion friendly after all. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1528-1536.	1.6	91
135	Planetesimal Evolution in Circumbinary Gaseous Disks: A Hybrid Model. Astrophysical Journal, 2008, 681, 1599-1608.	1.6	36
136	Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical familiesa~†. Icarus, 2007, 190, 622-642.	1.1	86
137	Planets in binary systems: is the present configuration indicative of the formation process?. Astronomy and Astrophysics, 2007, 467, 347-351.	2.1	19
138	Planet dispersal in binary systems during transient multiple star phases. Astronomy and Astrophysics, 2007, 472, 643-647.	2.1	10
139	A numerical study of the 2:1 planetary resonance. Astronomy and Astrophysics, 2006, 453, 341-348.	2.1	15
140	The surface composition of Jupiter Trojans: Visible and near-infrared survey of dynamical families. Icarus, 2006, 183, 420-434.	1.1	45
141	Relative velocities among accreting planetesimals in binary systems: The circumprimary case. Icarus, 2006, 183, 193-206.	1.1	139
142	PLANETARY SCIENCE: Puzzling Neptune Trojans. Science, 2006, 313, 451-452.	6.0	6
143	The Instability of Venus Trojans. Astronomical Journal, 2005, 130, 2912-2915.	1.9	25
144	Jumping Jupiters in Binary Star Systems. Astrophysical Journal, 2005, 618, 502-511.	1.6	33

#	Article	IF	CITATIONS
145	A search of outer Trojans on ASTROVIRTEL images. Planetary and Space Science, 2005, 53, 643-651.	0.9	1
146	Dynamics of Mars Trojans. Icarus, 2005, 175, 397-408.	1.1	53
147	Abrupt alteration of Asteroid 2004 MN4's spin state during its 2029 Earth flyby. Icarus, 2005, 178, 281-283.	1.1	44
148	Frequency map analysis of the 3/1 resonance between planets b and c in the 55 Cancri system. Astronomy and Astrophysics, 2005, 442, 359-364.	2.1	12
149	Evolution of NEO rotation rates due to close encounters with Earth and Venus. Icarus, 2004, 170, 312-323.	1.1	40
150	Planetary formation in thel ³ Cephei system. Astronomy and Astrophysics, 2004, 427, 1097-1104.	2.1	68
151	Abundance difference between components of wide binaries. Astronomy and Astrophysics, 2004, 420, 683-697.	2.1	83
152	Clues to the origin of jupiter's trojans: the libration amplitude distribution. Icarus, 2003, 162, 453-459.	1.1	11
153	Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project. Monthly Notices of the Royal Astronomical Society, 2003, 345, 1091-1100.	1.6	42
154	The MATROS project: Stability of Uranus and Neptune Trojans. The case of 2001 QR322. Astronomy and Astrophysics, 2003, 410, 725-734.	2.1	39
155	Saturn Trojans: Stability Regions in the Phase Space. Astrophysical Journal, 2002, 579, 905-913.	1.6	18
156	Terrestrial planet formation in exoplanetary systems with a giant planet on an external orbit. Astronomy and Astrophysics, 2002, 384, 594-602.	2.1	26
157	Formation of terrestrial planets in close binary systems: The case of $\hat{I}\pm$ Centauri A. Astronomy and Astrophysics, 2002, 396, 219-224.	2.1	38
158	Eccentric Extrasolar Planets: The Jumping Jupiter Model. Icarus, 2002, 156, 570-579.	1.1	236
159	On the Instability of Jupiter's Trojans. Icarus, 2002, 159, 328-338.	1.1	49
160	Asteroid detection at millimetric wavelengths with the PLANCK survey. New Astronomy, 2002, 7, 483-494.	0.8	11
161	Mean Motion Resonances, Gas Drag, and Supersonic Planetesimals in the Solar Nebula. Celestial Mechanics and Dynamical Astronomy, 2002, 82, 225-242.	0.5	10
162	Very early collisional evolution in the asteroid belt. Earth, Planets and Space, 2001, 53, 1093-1097.	0.9	17

#	Article	IF	CITATIONS
163	Updated collisional probabilities of minor body populations. Astronomy and Astrophysics, 2001, 366, 1053-1060.	2.1	41
164	Planetesimal Accretion in Binary Star Systems. Astrophysical Journal, 2000, 543, 328-339.	1.6	128
165	Capture of Trojans by a Growing Proto-Jupiter. Icarus, 1998, 131, 41-51.	1.1	74
166	The Origin of Chondrules at Jovian Resonances. Science, 1998, 279, 681-684.	6.0	119
167	Collisional Evolution of Trojan Asteroidsâ~†. Icarus, 1997, 125, 39-49.	1.1	52
168	Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature, 1996, 384, 619-621.	13.7	427
169	The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
170	Disks in close binary stars. Gamma-Cephei revisited. Astronomy and Astrophysics, 0, , .	2.1	2