Cigdem Gunduz-Demir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7527434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>AttentionBoost</i> : Learning What to Attend for Gland Segmentation in Histopathological Images by Boosting Fully Convolutional Networks. IEEE Transactions on Medical Imaging, 2020, 39, 4262-4273.	8.9	7
2	DeepDistance: A multi-task deep regression model for cell detection in inverted microscopy images. Medical Image Analysis, 2020, 63, 101720.	11.6	13
3	Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images. IEEE Transactions on Medical Imaging, 2019, 38, 1139-1149.	8.9	79
4	Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated With Adjacent Disc Degeneration. Spine, 2018, 43, E592-E600.	2.0	46
5	Objectâ€Oriented Segmentation of Cell Nuclei in Fluorescence Microscopy Images. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 1019-1028.	1.5	14
6	Iterative hâ€minimaâ€based markerâ€controlled watershed for cell nucleus segmentation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 338-349.	1.5	22
7	Local Object Patterns for the Representation and Classification of Colon Tissue Images. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1390-1396.	6.3	22
8	A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 480-490.	1.5	96
9	A Hybrid Classification Model for Digital Pathology Using Structural and Statistical Pattern Recognition. IEEE Transactions on Medical Imaging, 2013, 32, 474-483.	8.9	57
10	Attributed Relational Graphs for Cell Nucleus Segmentation in Fluorescence Microscopy Images. IEEE Transactions on Medical Imaging, 2013, 32, 1121-1131.	8.9	59
11	Graph walks for classification of histopathological images. , 2013, , .		2
12	Smart Markers for Watershed-Based Cell Segmentation. PLoS ONE, 2012, 7, e48664.	2.5	35
13	A Resampling-Based Markovian Model for Automated Colon Cancer Diagnosis. IEEE Transactions on Biomedical Engineering, 2012, 59, 281-289.	4.2	13
14	Multilevel Segmentation of Histopathological Images Using Cooccurrence of Tissue Objects. IEEE Transactions on Biomedical Engineering, 2012, 59, 1681-1690.	4.2	30
15	Graph Run-Length Matrices for Histopathological Image Segmentation. IEEE Transactions on Medical Imaging, 2011, 30, 721-732.	8.9	72
16	Detection of colon glands using subgraph modeling. , 2011, , .		0
17	Tissue object patterns for segmentation in histopathological images. , 2011, , .		0
18	Color Graphs for Automated Cancer Diagnosis and Grading. IEEE Transactions on Biomedical Engineering, 2010, 57, 665-674.	4.2	96

#	Article	IF	CITATIONS
19	Unsupervised Tissue Image Segmentation through Object-Oriented Texture. , 2010, , .		7
20	Automatic segmentation of colon glands using object-graphs. Medical Image Analysis, 2010, 14, 1-12.	11.6	122
21	Mathematical analysis of colon glands for cancer diagnosis. , 2009, , .		0
22	Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recognition, 2009, 42, 1104-1112.	8.1	82
23	Mathematical modeling of the malignancy of cancer using graph evolution. Mathematical Biosciences, 2007, 209, 514-527.	1.9	19