
## Marc Delarue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7527248/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nature Communications, 2021, 12, 2420.                                                                                                   | 5.8 | 24        |
| 2  | Fast and efficient purification of SARS-CoV-2 RNA dependent RNA polymerase complex expressed in Escherichia coli. PLoS ONE, 2021, 16, e0250610.                                                                                                       | 1.1 | 5         |
| 3  | Simultaneous Identification of Multiple Binding Sites in Proteins: A Statistical Mechanics Approach.<br>Journal of Physical Chemistry B, 2021, 125, 5052-5067.                                                                                        | 1.2 | 1         |
| 4  | Parameterizing elastic network models to capture the dynamics of proteins. Journal of Computational Chemistry, 2021, 42, 1643-1661.                                                                                                                   | 1.5 | 11        |
| 5  | Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA. Nature Communications, 2021, 12, 4710.                                                                                      | 5.8 | 15        |
| 6  | Physics approach to the variable-mass optimal-transport problem. Physical Review E, 2021, 103, 012113.                                                                                                                                                | 0.8 | 6         |
| 7  | Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage I•VC8. Nucleic Acids Research, 2021, 49, 11974-11985.                                                                                        | 6.5 | 5         |
| 8  | Extracting Dynamical Correlations and Identifying Key Residues for Allosteric Communication in<br>Proteins by <i>correlationplus</i> . Journal of Chemical Information and Modeling, 2021, 61, 4832-4838.                                             | 2.5 | 21        |
| 9  | Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained<br>by Directed Evolution. Biomolecules, 2020, 10, 1647.                                                                                             | 1.8 | 7         |
| 10 | Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13437-13446.                                         | 3.3 | 18        |
| 11 | Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA.<br>Nature Communications, 2020, 11, 1591.                                                                                                           | 5.8 | 34        |
| 12 | Structural evidence for the binding of monocarboxylates and dicarboxylates at pharmacologically<br>relevant extracellular sites of a pentameric ligand-gated ion channel. Acta Crystallographica Section<br>D: Structural Biology, 2020, 76, 668-675. | 1.1 | 6         |
| 13 | Statistical Physics Approach to the Optimal Transport Problem. Physical Review Letters, 2019, 123, 040603.                                                                                                                                            | 2.9 | 11        |
| 14 | Optimal transport at finite temperature. Physical Review E, 2019, 100, 013310.                                                                                                                                                                        | 0.8 | 8         |
| 15 | Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an<br>NHEJ double-strand break junction. Journal of Biological Chemistry, 2019, 294, 10579-10595.                                                     | 1.6 | 7         |
| 16 | Structure of the DP1–DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases. PLoS Biology, 2019, 17, e3000122.                                                                                  | 2.6 | 30        |
| 17 | Rapid enzymatic synthesis of long RNA polymers: A simple protocol to generate RNA libraries with random sequences. Methods, 2019, 161, 83-90.                                                                                                         | 1.9 | 1         |
| 18 | Numerical Encodings of Amino Acids in Multivariate Gaussian Modeling of Protein Multiple Sequence<br>Alignments. Molecules, 2019, 24, 104.                                                                                                            | 1.7 | 2         |

Marc Delarue

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An updated structural classification of replicative DNA polymerases. Biochemical Society<br>Transactions, 2019, 47, 239-249.                                                                                                                     | 1.6 | 34        |
| 20 | Coarse-grained dynamics of supramolecules: Conformational changes in outer shells of Dengue viruses. Progress in Biophysics and Molecular Biology, 2019, 143, 20-37.                                                                             | 1.4 | 3         |
| 21 | Terminal deoxynucleotidyltransferase: the story of an untemplated DNA polymerase capable of DNA<br>bridging and templated synthesis across strands. Current Opinion in Structural Biology, 2018, 53,<br>22-31.                                   | 2.6 | 27        |
| 22 | Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and<br>identify a cavity for modulation. Proceedings of the National Academy of Sciences of the United States<br>of America, 2018, 115, E3959-E3968. | 3.3 | 26        |
| 23 | Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric<br>Ligand-Gated Ion Channels. Cell Reports, 2018, 23, 993-1004.                                                                               | 2.9 | 33        |
| 24 | Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12172-E12181.           | 3.3 | 30        |
| 25 | Enzymatic synthesis of random sequences of RNA and RNA analogues by DNA polymerase theta mutants<br>for the generation of aptamer libraries. Nucleic Acids Research, 2018, 46, 6271-6284.                                                        | 6.5 | 16        |
| 26 | Combined approaches from physics, statistics, and computer science for ab initio protein structure prediction: ex unitate vires (unity is strength)?. F1000Research, 2018, 7, 1125.                                                              | 0.8 | 9         |
| 27 | Secret From the ABYSS: Structures of the D-Family DNA Polymerase (POLD) Reveal that DNA Replication and DNA Transcription Share a Joint Evolutionary History in Archaea. Biophysical Journal, 2018, 114, 218a.                                   | 0.2 | 0         |
| 28 | Meet-U: Educating through research immersion. PLoS Computational Biology, 2018, 14, e1005992.                                                                                                                                                    | 1.5 | 4         |
| 29 | The Renormalization Group and Its Applications to Generating Coarse-Grained Models of Large<br>Biological Molecular Systems. Journal of Chemical Theory and Computation, 2017, 13, 1424-1438.                                                    | 2.3 | 16        |
| 30 | String method solution of the gating pathways for a pentameric ligand-gated ion channel.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4158-E4167.                                             | 3.3 | 60        |
| 31 | Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Shut State.<br>Biophysical Journal, 2017, 112, 553a.                                                                                                        | 0.2 | Ο         |
| 32 | Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State.<br>Journal of Biological Chemistry, 2017, 292, 1550-1558.                                                                                     | 1.6 | 19        |
| 33 | <i>Ab initio</i> sampling of transition paths by conditioned Langevin dynamics. Journal of Chemical Physics, 2017, 147, 152703.                                                                                                                  | 1.2 | 22        |
| 34 | Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biology, 2017, 15, e2004470.                    | 2.6 | 24        |
| 35 | Identification of a pre-active conformation of a pentameric channel receptor. ELife, 2017, 6, .                                                                                                                                                  | 2.8 | 36        |
| 36 | Comparative Normal Mode Analysis of the Dynamics of DENV and ZIKV Capsids. Frontiers in Molecular<br>Biosciences, 2016, 3, 85.                                                                                                                   | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sites of Anesthetic Inhibitory Action on a Cationic Ligand-Gated Ion Channel. Structure, 2016, 24, 595-605.                                                                                                                                       | 1.6 | 35        |
| 38 | Beyond Poisson–Boltzmann: Numerical Sampling of Charge Density Fluctuations. Journal of Physical<br>Chemistry B, 2016, 120, 6270-6277.                                                                                                            | 1.2 | 3         |
| 39 | Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications<br>for V(D)J Recombination. Structure, 2016, 24, 1452-1463.                                                                                  | 1.6 | 28        |
| 40 | Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography. Nature Communications, 2016, 7, 12227.                                                                                 | 5.8 | 40        |
| 41 | Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel. PLoS ONE, 2016, 11, e0149795.                                                                                                                            | 1.1 | 31        |
| 42 | Allosteric and hyperekplexic mutant phenotypes investigated on an α <sub>1</sub> glycine receptor transmembrane structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2865-2870.                 | 3.3 | 56        |
| 43 | Genuine open form of the pentameric ligand-gated ion channel GLIC. Acta Crystallographica Section D:<br>Biological Crystallography, 2015, 71, 454-460.                                                                                            | 2.5 | 25        |
| 44 | Structural basis for a novel mechanism of <scp>DNA</scp> bridging and alignment in eukaryotic <scp>DSB DNA</scp> repair. EMBO Journal, 2015, 34, 1126-1142.                                                                                       | 3.5 | 21        |
| 45 | Crystallographic studies of pharmacological sites in pentameric ligand-gated ion channels.<br>Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 511-523.                                                                              | 1.1 | 46        |
| 46 | Modified Poisson–Boltzmann equations for characterizing biomolecular solvation. Journal of<br>Theoretical and Computational Chemistry, 2014, 13, 1440001.                                                                                         | 1.8 | 13        |
| 47 | Enhanced Amino Acid Selection in Fully Evolved Tryptophanyl-tRNA Synthetase, Relative to Its Urzyme,<br>Requires Domain Motion Sensed by the D1 Switch, a Remote Dynamic Packing Motif. Journal of<br>Biological Chemistry, 2014, 289, 4367-4376. | 1.6 | 33        |
| 48 | Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 966-971.                                           | 3.3 | 175       |
| 49 | Structural Basis for Allosteric Transitions in the GLIC Pentameric Proton-Gated Ion Channel.<br>Biophysical Journal, 2014, 106, 343a.                                                                                                             | 0.2 | 0         |
| 50 | New Nucleotide-Competitive Non-Nucleoside Inhibitors of Terminal Deoxynucleotidyl Transferase:<br>Discovery, Characterization, and Crystal Structure in Complex with the Target. Journal of Medicinal<br>Chemistry, 2013, 56, 7431-7441.          | 2.9 | 24        |
| 51 | Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO<br>Journal, 2013, 32, 728-741.                                                                                                                        | 3.5 | 140       |
| 52 | Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase:<br>Dynamical Aspects of the Two-Metal Ion Mechanism. Journal of Molecular Biology, 2013, 425, 4334-4352.                                           | 2.0 | 41        |
| 53 | Computational Assembly of Polymorphic Amyloid Fibrils Reveals Stable Aggregates. Biophysical<br>Journal, 2013, 104, 683-693.                                                                                                                      | 0.2 | 36        |
| 54 | Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nature Communications, 2013, 4, 1697.                                                                                                               | 5.8 | 126       |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | 2′â€Đeoxyribonucleoside Phosphoramidate Triphosphate Analogues as Alternative Substrates for <i>E.<br/>coli</i> Polymerase III. ChemBioChem, 2012, 13, 2439-2444.                                                                                     | 1.3  | 9         |
| 56 | Molecular Recognition of Canonical and Deaminated Bases by P. abyssi Family B DNA Polymerase.<br>Journal of Molecular Biology, 2012, 423, 315-336.                                                                                                    | 2.0  | 36        |
| 57 | A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nature Structural and Molecular Biology, 2012, 19, 642-649.                                                                                                         | 3.6  | 135       |
| 58 | Structure and Pharmacology of Pentameric Receptor Channels: From Bacteria to Brain. Structure, 2012, 20, 941-956.                                                                                                                                     | 1.6  | 202       |
| 59 | X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature, 2011, 469, 428-431.                                                                                                                                  | 13.7 | 407       |
| 60 | AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Research, 2011, 39, W184-W189.                                                                                         | 6.5  | 91        |
| 61 | Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. Journal of Physiology, 2010, 588, 565-572.                                                                                              | 1.3  | 102       |
| 62 | One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor<br>homologue. Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 6275-6280.                                       | 3.3  | 159       |
| 63 | Crystal Structure of the Extracellular Domain of a Bacterial Ligand-Gated Ion Channel. Journal of<br>Molecular Biology, 2010, 395, 1114-1127.                                                                                                         | 2.0  | 52        |
| 64 | Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA<br>Gyrase. PLoS ONE, 2010, 5, e12245.                                                                                                                   | 1.1  | 118       |
| 65 | Structure of the Archaeal Pab87 Peptidase Reveals a Novel Self-Compartmentalizing Protease Family.<br>PLoS ONE, 2009, 4, e4712.                                                                                                                       | 1.1  | 23        |
| 66 | Independent saturation of three TrpRS subsites generates a partially assembled state similar to those<br>observed in molecular simulations. Proceedings of the National Academy of Sciences of the United<br>States of America, 2009, 106, 1790-1795. | 3.3  | 28        |
| 67 | Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Nucleic Acids Research, 2009, 37, 4642-4656.                                                                            | 6.5  | 28        |
| 68 | X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature, 2009, 457, 111-114.                                                                                                                              | 13.7 | 644       |
| 69 | Computing Ion Solvation Free Energies Using the Dipolar Poisson Model. Journal of Physical<br>Chemistry B, 2009, 113, 5694-5697.                                                                                                                      | 1.2  | 25        |
| 70 | Insights Into the Enzymatic Mechanism of 6-Phosphogluconolactonase from Trypanosoma brucei<br>Using Structural Data and Molecular Dynamics Simulation. Journal of Molecular Biology, 2009, 388,<br>1009-1021.                                         | 2.0  | 16        |
| 71 | Dealing with structural variability in molecular replacement and crystallographic refinement<br>through normal-mode analysis. Acta Crystallographica Section D: Biological Crystallography, 2008,<br>64, 40-48.                                       | 2.5  | 20        |
| 72 | Incorporating Dipolar Solvents with Variable Density in Poisson-Boltzmann Electrostatics.<br>Biophysical Journal, 2008, 95, 5587-5605.                                                                                                                | 0.2  | 73        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucleic Acids Research, 2007, 35, W477-W482.                                             | 6.5 | 76        |
| 74 | Three Dimensional Structure and Implications for the Catalytic Mechanism of<br>6-Phosphogluconolactonase from Trypanosoma brucei. Journal of Molecular Biology, 2007, 366,<br>868-881.                                              | 2.0 | 21        |
| 75 | Determination of dihedral Î <sup>.</sup> angles in large proteins by combining NHN/CαHα dipole/dipole<br>cross-correlation and chemical shifts. Proteins: Structure, Function and Bioinformatics, 2006, 64,<br>931-939.             | 1.5 | 4         |
| 76 | PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Research, 2006, 34, W38-W42.                                                      | 6.5 | 62        |
| 77 | NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Research, 2006, 34, W52-W56.                                                                | 6.5 | 292       |
| 78 | An asymmetric underlying rule in the assignment of codons: Possible clue to a quick early evolution of the genetic code via successive binary choices. Rna, 2006, 13, 161-169.                                                      | 1.6 | 47        |
| 79 | Refinement of docked protein-ligand and protein-DNA structures using low frequency normal mode amplitude optimization. Nucleic Acids Research, 2005, 33, 4496-4506.                                                                 | 6.5 | 62        |
| 80 | Normal Mode Analysis Suggests a Quaternary Twist Model for the Nicotinic Receptor Gating<br>Mechanism. Biophysical Journal, 2005, 88, 3954-3965.                                                                                    | 0.2 | 178       |
| 81 | On the use of low-frequency normal modes to enforce collective movements in refining<br>macromolecular structural models. Proceedings of the National Academy of Sciences of the United<br>States of America, 2004, 101, 6957-6962. | 3.3 | 187       |
| 82 | Enzymatic and Structural Analysis of Inhibitors Designed against Mycobacterium tuberculosis<br>Thymidylate Kinase. Journal of Biological Chemistry, 2003, 278, 4963-4971.                                                           | 1.6 | 82        |
| 83 | Simplified Normal Mode Analysis of Conformational Transitions in DNA-dependent Polymerases: the<br>Elastic Network Model. Journal of Molecular Biology, 2002, 320, 1011-1024.                                                       | 2.0 | 243       |
| 84 | Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals.<br>Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 607-614.                                            | 2.5 | 34        |
| 85 | Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO Journal, 2002, 21, 427-439.                                                                                          | 3.5 | 138       |
| 86 | Resolution of the phase-ambiguity problem in the centrosymmetric P ar{1} space group by Monte Carlo methods. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, 554-561.                                         | 0.3 | 2         |
| 87 | General formalism for phase combination and phase refinement: a statistical thermodynamics<br>approach in reciprocal space. Acta Crystallographica Section A: Foundations and Advances, 2000, 56,<br>562-574.                       | 0.3 | 5         |
| 88 | Aspartyl tRNA-synthetase from Escherichia coli: flexibility and adaptability to the substrates. Journal of Molecular Biology, 2000, 299, 1157-1164.                                                                                 | 2.0 | 36        |
| 89 | Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein. Journal of Molecular Biology, 2000, 300, 563-574.                                                                               | 2.0 | 40        |
| 90 | Building protein lattice models using self-consistent mean field theory. Journal of Chemical Physics, 1998, 108, 9540-9549.                                                                                                         | 1.2 | 14        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Cloning and characterisation of a gene from Plasmodium vivax and P. knowlesi: homology with valine-tRNA synthetase. Gene, 1996, 173, 137-145.                                                                                                             | 1.0  | 2         |
| 92  | Mean-field minimization methods for biological macromolecules. Current Opinion in Structural Biology, 1996, 6, 222-226.                                                                                                                                   | 2.6  | 77        |
| 93  | [40] Converting sequence block alignments into structural insights. Methods in Enzymology, 1996, 266, 662-680.                                                                                                                                            | 0.4  | 4         |
| 94  | Partition of aminoacyl-tRNA synthetases in two different structural classes dating back to early<br>metabolism: Implications for the origin of the genetic code and the nature of protein sequences.<br>Journal of Molecular Evolution, 1995, 41, 703-11. | 0.8  | 15        |
| 95  | Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nature Structural Biology, 1995, 2, 537-547.                                                                                                                                         | 9.7  | 145       |
| 96  | Atomic Environment Energies in Proteins Defined from Statistics of Accessible and Contact Surface<br>Areas. Journal of Molecular Biology, 1995, 249, 675-690.                                                                                             | 2.0  | 36        |
| 97  | Polar and nonpolar atomic environments in the protein core: Implications for folding and binding.<br>Proteins: Structure, Function and Bioinformatics, 1994, 20, 264-278.                                                                                 | 1.5  | 86        |
| 98  | Application of a Self-consistent Mean Field Theory to Predict Protein Side-chains Conformation and Estimate Their Conformational Entropy. Journal of Molecular Biology, 1994, 239, 249-275.                                                               | 2.0  | 347       |
| 99  | Crystallization and X-ray Crystallogragphic Analysis of Recombinant Chicken Poly (ADP-ribose)<br>Polymerase Catalytic Domain Produced in Sf9 Insect Cells. Journal of Molecular Biology, 1994, 244,<br>114-116.                                           | 2.0  | 30        |
| 100 | Synthesis and Recognition of Aspartyl-adenylate by Thermus thermophilus Aspartyl-tRNA Synthetase.<br>Journal of Molecular Biology, 1994, 244, 158-167.                                                                                                    | 2.0  | 73        |
| 101 | Crystal Structure of Cleaved Bovine Antithrombin III at 3·2 à Resolution. Journal of Molecular<br>Biology, 1993, 232, 223-241.                                                                                                                            | 2.0  | 110       |
| 102 | Three-dimensional structure of phenylalanyl-transfer RNA synthetase from Thermus thermophilus<br>HB8 at 0.6-nm resolution. FEBS Journal, 1992, 208, 411-417.                                                                                              | 0.2  | 9         |
| 103 | Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs.<br>Nature, 1990, 347, 203-206.                                                                                                                        | 13.7 | 1,372     |
| 104 | An attempt to unify the structure of polymerases. Protein Engineering, Design and Selection, 1990, 3, 461-467.                                                                                                                                            | 1.0  | 616       |