Vito Verardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7527112/publications.pdf

Version: 2024-02-01

		117625	133252
102	4,165	34	59
papers	citations	h-index	g-index
102	102	102	F019
103	103	103	5918
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products. Foods, 2022, 11, 343.	4.3	10
2	Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira compressa during Seasonal Growth. Marine Drugs, 2022, 20, 64.	4.6	29
3	The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves. Foods, 2022, 11, 314.	4.3	5
4	Evaluation of Phenolic Compounds and Pigments Content in Yellow Bell Pepper Wastes. Antioxidants, 2022, 11, 557.	5.1	7
5	Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants, 2022, 11, 558.	5.1	24
6	Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium mangrovei. Marine Drugs, 2022, 20, 39.	4.6	13
7	INTENTIONAL ERRORS AND GAME-BASED PLATFORMS AS MECHANISMS TO IMPROVE LEARNING AMONG UNIVERSITY STUDENTS: A PILOT STUDY CARRIED OUT IN THE DEGREE IN NUTRITION. EDULEARN Proceedings, 2022, , .	0.0	O
8	Distribution of free and bound phenolic compounds, and alkylresorcinols in wheat aleurone enriched fractions. Food Research International, 2021, 140, 109816.	6.2	18
9	Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification. Foods, 2021, 10, 182.	4.3	40
10	Exploring Dietary Behavior Changes Due to the COVID-19 Confinement in Colombia: A National and Regional Survey Study. Frontiers in Nutrition, 2021, 8, 644800.	3.7	17
11	Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods, 2021, 10, 1120.	4.3	28
12	Setup of an Ultrasonic-Assisted Extraction to Obtain High Phenolic Recovery in Crataegus monogyna Leaves. Molecules, 2021, 26, 4536.	3.8	8
13	Recent developments in extraction and encapsulation techniques of orange essential oil. Food Chemistry, 2021, 354, 129575.	8.2	47
14	Air classification as a useful technology to obtain phenolics-enriched buckwheat flour fractions. LWT - Food Science and Technology, 2021, 150, 111893.	5.2	10
15	Impact of COVID-19 confinement on eating behaviours across 16 European countries: The COVIDiet cross-national study. Food Quality and Preference, 2021, 93, 104231.	4.6	54
16	Influence of infant cereal formulation on phenolic compounds and formation of Maillard reaction products. Journal of Food Composition and Analysis, 2021, 104, 104187.	3.9	8
17	Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. Biology, 2021, 10, 1091.	2.8	11
18	Optimization of Ultrasound Assisted Extraction of Phenolic Compounds from Orange By-Product. Proceedings (mdpi), 2021, 70, 49.	0.2	1

#	Article	IF	Citations
19	Assessment of phytochemical compounds in functional couscous: Determination of free and bound phenols and alkylresorcinols. Food Research International, 2020, 130, 108970.	6.2	5
20	Effect of Different Egg Products on Lipid Oxidation of Biscuits. Foods, 2020, 9, 1714.	4.3	12
21	New Advances in the Determination of Free and Bound Phenolic Compounds of Banana Passion Fruit Pulp (Passiflora tripartita, var. Mollissima (Kunth) L.H. Bailey) and Their In Vitro Antioxidant and Hypoglycemic Capacities. Antioxidants, 2020, 9, 628.	5.1	18
22	Bioprocessing of Brewers' Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Frontiers in Microbiology, 2020, 11, 1831.	3.5	69
23	Bioactive Compounds and Antioxidant Capacity of Moringa Leaves Grown in Spain Versus 28 Leaves Commonly Consumed in Pre-Packaged Salads. Processes, 2020, 8, 1297.	2.8	11
24	Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients, 2020, 12, 1730.	4.1	387
25	Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods, 2020, 9, 770.	4.3	20
26	Bioactive Components in Fermented Foods and Food By-Products. Foods, 2020, 9, 153.	4.3	18
27	Establishment of Acid Hydrolysis by Box–Behnken Methodology as Pretreatment to Obtain Reducing Sugars from Tiger Nut Byproducts. Agronomy, 2020, 10, 477.	3.0	6
28	Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers' spent grains. Innovative Food Science and Emerging Technologies, 2020, 64, 102402.	5.6	56
29	Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers' Spent Grains. Antioxidants, 2019, 8, 282.	5.1	24
30	Chemical and physical changes during storage of differently packed biscuits formulated with sunflower oil. Journal of Food Science and Technology, 2019, 56, 4714-4721.	2.8	9
31	Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients, 2019, 11, 2435.	4.1	101
32	How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods, 2019, 8, 362.	4.3	98
33	New insight into phenolic composition of chayote (Sechium edule (Jacq.) Sw.). Food Chemistry, 2019, 295, 514-519.	8.2	20
34	Recovery of Oligomeric Proanthocyanidins and Other Phenolic Compounds with Established Bioactivity from Grape Seed By-Products. Molecules, 2019, 24, 677.	3.8	21
35	Use of Sieving as a Valuable Technology to Produce Enriched Buckwheat Flours: A Preliminary Study. Antioxidants, 2019, 8, 583.	5.1	4
36	Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods, 2019, 8, 670.	4.3	19

#	Article	IF	CITATIONS
37	GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 2019, 115, 219-226.	6.2	21
38	Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Analytical and Bioanalytical Chemistry, 2018, 410, 3607-3619.	3.7	39
39	Effect of early lactation stage on goat colostrum: Assessment of lipid and oligosaccharide compounds. International Dairy Journal, 2018, 77, 65-72.	3.0	17
40	Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. LWT - Food Science and Technology, 2018, 87, 217-224.	5.2	31
41	Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 2018, 269, 258-263.	8.2	63
42	Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Food Research International, 2018, 112, 390-399.	6.2	41
43	Olea europaea as Potential Source of Bioactive Compounds for Diseases Prevention. Studies in Natural Products Chemistry, 2018, , 389-411.	1.8	11
44	Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera) Tj ETQq0	0 0 rgBT /	Overjock 10 T
45	The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Research International, 2017, 96, 64-71.	6.2	27
46	Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles―approach. Food Chemistry, 2017, 233, 302-310.	8.2	91
47	RP-HPLC–DAD-ESI-TOF–MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus Limon by-product and their antioxidant activity. European Food Research and Technology, 2017, 243, 2011-2024.	3.3	17
48	Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
49	Design of Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium guajava L. Leaves. Food Analytical Methods, 2017, 10, 2781-2791.	2.6	21
50	Psidium guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 2017, 133, 1-7.	2.8	19
51	Influence of drying temperatures on the quality of pasta formulated with different egg products. European Food Research and Technology, 2017, 243, 817-825.	3.3	14
52	Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (<i>Vitis vinifera</i> L.). Journal of the Science of Food and Agriculture, 2017, 97, 3058-3064.	3.5	11
53	Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade. International Journal of Molecular Sciences, 2017, 18, 897.	4.1	97
54	Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. International Journal of Molecular Sciences, 2017, 18, 173.	4.1	56

#	Article	IF	CITATIONS
55	Phenolic Compounds in the Potato and Its Byproducts: An Overview. International Journal of Molecular Sciences, 2016, 17, 835.	4.1	207
56	Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. International Journal of Molecular Sciences, 2016, 17, 699.	4.1	28
57	HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). Electrophoresis, 2016, 37, 1072-1084.	2.4	69
58	Determination of lipophilic and hydrophilic bioactive compounds in raw and parboiled rice bran. RSC Advances, 2016, 6, 50786-50796.	3.6	17
59	Effect of fermentation on the content of bioactive compounds in tofu-type products. Journal of Functional Foods, 2016, 27, 131-139.	3.4	22
60	New insight into the cholesterol-lowering effect of phytosterols in rat cardiomyocytes. Food Research International, 2016, 89, 1056-1063.	6.2	20
61	Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. Journal of Functional Foods, 2016, 22, 376-388.	3.4	100
62	Determination of lipid composition of the two principal cherimoya cultivars grown in Andalusian Region. LWT - Food Science and Technology, 2016, 65, 390-397.	5.2	10
63	Changes of the lipid fraction during fruit development in hazelnuts (<i>Corylus avellana</i> L.) grown in Poland. European Journal of Lipid Science and Technology, 2015, 117, 710-717.	1.5	15
64	Determination of Polar Compounds in Guava Leaves Infusions and Ultrasound Aqueous Extract by HPLC-ESI-MS. Journal of Chemistry, 2015, 2015, 1-9.	1.9	29
65	Use of air classification technology as green process to produce functional barley flours naturally enriched of alkylresorcinols, \hat{l}^2 -glucans and phenolic compounds. Food Research International, 2015, 73, 88-96.	6.2	20
66	Determination of free and bound phenolic compounds in soy isoflavone concentrate using a PFP fused core column. Food Chemistry, 2015, 185, 239-244.	8.2	18
67	Analysis of Oligomer Proanthocyanidins in Different Barley Genotypes Using High-Performance Liquid Chromatography–Fluorescence Detection–Mass Spectrometry and Near-Infrared Methodologies. Journal of Agricultural and Food Chemistry, 2015, 63, 4130-4137.	5.2	37
68	Determination of bioactive compounds in cream obtained as a by-product during cheese-making: Influence of cows' diet on lipid quality. International Dairy Journal, 2015, 42, 16-25.	3.0	12
69	Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chemistry, 2015, 168, 615-622.	8.2	61
70	Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa) Tj ETQq0 0 0 rg	BT/Qverlc	ock 10 Tf 50 1
71	Analysis of glycerophospho―and sphingolipids by <scp>CE</scp> . Electrophoresis, 2014, 35, 779-792.	2.4	11
72	Phenolic Compounds and Saponins in Plants Grown Under Different Irrigation Regimes., 2014,, 37-52.		8

#	Article	IF	Citations
73	Pomegranate seeds as a source of nutraceutical oil naturally rich in bioactive lipids. Food Research International, 2014, 65, 445-452.	6.2	76
74	A chemometric approach to determine the phenolic compounds in different barley samples by two different stationary phases: A comparison between C18 and pentafluorophenyl core shell columns. Journal of Chromatography A, 2014, 1355, 134-142.	3.7	41
75	Determination of the Major Phenolic Compounds in Pomegranate Juices by HPLC–DAD–ESI-MS. Journal of Agricultural and Food Chemistry, 2013, 61, 5328-5337.	5.2	134
76	Fourier transform infrared spectroscopy–Partial Least Squares (FTIR–PLS) coupled procedure application for the evaluation of fly attack on olive oil quality. LWT - Food Science and Technology, 2013, 50, 153-159.	5.2	18
77	Effect of nitrogen fertilisation rates on the content of fatty acids, sterols, tocopherols and phenolic compounds, and on the oxidative stability of walnuts. LWT - Food Science and Technology, 2013, 50, 732-738.	5.2	36
78	Bioactive lipids in the butter production chain from Parmigiano Reggiano cheese area. Journal of the Science of Food and Agriculture, 2013, 93, 3625-3633.	3.5	31
79	Counteraction of oxidative damage by pomegranate juice: influence of the cultivar. Journal of the Science of Food and Agriculture, 2013, 93, 3565-3573.	3.5	22
80	Molecular Characterization of Phospholipids by High-Performance Liquid Chromatography Combined with an Evaporative Light Scattering Detector, High-Performance Liquid Chromatography Combined with Mass Spectrometry, and Gas Chromatography Combined with a Flame Ionization Detector in Different Oat Varieties. Journal of Agricultural and Food Chemistry, 2012, 60, 10963-10969.	5.2	21
81	Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 2012, 133, 1025-1033.	8.2	69
82	Development of Functional Spaghetti Enriched in Bioactive Compounds Using Barley Coarse Fraction Obtained by Air Classification. Journal of Agricultural and Food Chemistry, 2011, 59, 9127-9134.	5.2	35
83	Determination of Free and Bound Phenolic Compounds in Buckwheat Spaghetti by RP-HPLC-ESI-TOF-MS: Effect of Thermal Processing from Farm to Fork. Journal of Agricultural and Food Chemistry, 2011, 59, 7700-7707.	5.2	72
84	Air classification of barley flours to produce phenolic enriched ingredients: Comparative study among MEKC-UV, RP-HPLC-DAD-MS and spectrophotometric determinations. LWT - Food Science and Technology, 2011, 44, 1555-1561.	5.2	28
85	Role of cereal type and processing in whole grain in vivo protection from oxidative stress. Frontiers in Bioscience - Landmark, 2011, 16, 1609.	3.0	40
86	Free and bound minor polar compounds in oats: Different extraction methods and analytical determinations. Journal of Cereal Science, 2011, 54, 211-217.	3.7	52
87	Rocket salad (<i>Diplotaxis</i> and <i>Eruca</i> spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 2011, 91, 2858-2864.	3.5	66
88	Development of a CEâ€ESlâ€microTOFâ€MS method for a rapid identification of phenolic compounds in buckwheat. Electrophoresis, 2011, 32, 669-673.	2.4	24
89	Phytosterol supplementation reduces metabolic activity and slows cell growth in cultured rat cardiomyocytes. British Journal of Nutrition, 2011, 106, 540-548.	2.3	18
90	Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products. International Journal of Food Sciences and Nutrition, 2011, 62, 262-269.	2.8	15

#	Article	IF	Citations
91	Effect of the addition of air-classified barley flours on the lipid stability of bakery products. European Food Research and Technology, 2010, 231, 309-319.	3.3	15
92	Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography–electrospray ionization-time of flight-mass spectrometry (RP-HPLC–ESI-TOF-MS). Journal of Cereal Science, 2010, 52, 170-176.	3.7	77
93	Chromatographic techniques for the determination of alkyl-phenols, tocopherols and other minor polar compounds in raw and roasted cold pressed cashew nut oils. Journal of Chromatography A, 2010, 1217, 7411-7417.	3.7	52
94	Influence of Storage Conditions on Cholesterol Oxidation in Dried Egg Pasta. Journal of Agricultural and Food Chemistry, 2010, 58, 3586-3590.	5.2	17
95	Accelerated oxidation: Comparative study of a new reactor with oxidation stability instrument. European Journal of Lipid Science and Technology, 2009, 111, 933-940.	1.5	27
96	CAPILLARY GAS CHROMATOGRAPHY ANALYSIS OF LIPID COMPOSITION AND EVALUATION OF PHENOLIC COMPOUNDS BY MICELLAR ELECTROKINETIC CHROMATOGRAPHY IN ITALIAN WALNUT (<i>)JUGLANS REGIA</i>)	Tj Æ &Qq0	0 Ø1rgBT /Ov
97	Characterization of Total, Free and Esterified Phytosterols in Tetraploid and Hexaploid Wheats. Journal of Agricultural and Food Chemistry, 2009, 57, 2267-2273.	5.2	33
98	Development of a rapid method to determine phenolic and other polar compounds in walnut by capillary electrophoresis–electrospray ionization time-of-flight mass spectrometry. Journal of Chromatography A, 2008, 1209, 238-245.	3.7	75
99	Distribution of Bound Hydroxycinnamic Acids and Their Glycosyl Esters in Barley (Hordeum vulgare) Tj ETQq1 1 C Chromatographyâ^'Mass Spectrometry (RP-HPLC/MS) and Spectrophotometric Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 11900-11905.	5.2	gBT /Overloc 29
100	Determination of Free Flavan-3-ol Content in Barley (Hordeum vulgare L.) Air-Classified Flours: Comparative Study of HPLC-DAD/MS and Spectrophotometric Determinations. Journal of Agricultural and Food Chemistry, 2008, 56, 6944-6948.	5.2	30
101	Antioxidant Phenols in Barley (Hordeum vulgareL.) Flour:Â Comparative Spectrophotometric Study among Extraction Methods of Free and Bound Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2004, 52, 5195-5200.	5.2	249
102	Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. International Journal of Food Properties, 0, , 1-15.	3.0	9