
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7526937/publications.pdf Version: 2024-02-01



Ιςλμι Μλέρλ

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms,<br>2022, 10, 28.                                                                                                                            | 3.6  | 15        |
| 2  | Utilizing Cattle Manure Compost Increases Ammonia Monooxygenase A Gene Expression and<br>Ammonia-oxidizing Activity of Both Bacteria and Archaea in Biofiltration Media for Ammonia<br>Deodorization. Microbes and Environments, 2021, 36, n/a. | 1.6  | 4         |
| 3  | Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 1530-1535.                                                               | 1.3  | 6         |
| 4  | The Growth of Leaf Lettuce and Bacterial Communities in a Closed Aquaponics System with Catfish.<br>Horticulturae, 2021, 7, 222.                                                                                                                | 2.8  | 6         |
| 5  | Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with <i>Rhizopus oligosporus</i> . Bioscience, Biotechnology and Biochemistry, 2020, 84, 1285-1290.                     | 1.3  | 31        |
| 6  | Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air. Journal of Bioscience and Bioengineering, 2019, 127, 589-593.                                                                        | 2.2  | 23        |
| 7  | Evaluating of quality of rice bran protein concentrate prepared by a combination of isoelectronic precipitation and electrolyzed water treatment. LWT - Food Science and Technology, 2019, 99, 262-267.                                         | 5.2  | 19        |
| 8  | Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid<br>production from the by-products of rice as a biomass refinery function. Journal of Bioscience and<br>Bioengineering, 2017, 123, 245-251.    | 2.2  | 14        |
| 9  | Effect of increased feeding of dietary αâ€linolenic acid by grazing on formation of the<br><i>cis</i> 9, <i>trans</i> 11–18:2 isoform of conjugated linoleic acid in bovine milk. Animal Science<br>Journal, 2017, 88, 1006-1011.               | 1.4  | 6         |
| 10 | Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic<br>photosynthetic bacterium <i>Rhodopseudomonas palustris</i> . Bioscience, Biotechnology and<br>Biochemistry, 2016, 80, 407-413.                      | 1.3  | 5         |
| 11 | Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative<br>analysis of ammonia monooxygenase gene in different types of compost. Journal of Bioscience and<br>Bioengineering, 2016, 121, 57-65.    | 2.2  | 22        |
| 12 | Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance. Biosensors and Bioelectronics, 2015, 67, 309-314.                                                      | 10.1 | 9         |
| 13 | Simultaneous recovery and purification of rice protein and phosphorus compounds from full-fat and defatted rice bran with organic solvent-free process. Journal of Bioscience and Bioengineering, 2015, 119, 206-211.                           | 2.2  | 11        |
| 14 | Combinatorial parallel display of polypeptides using bacteriophage T7 for development of fluorescent nano-bioprobes. Journal of Bioscience and Bioengineering, 2013, 116, 28-33.                                                                | 2.2  | 4         |
| 15 | Acyclic carotenoid and cyclic apocarotenoid cleavage by an orthologue of lignostilbene-α,β-dioxygenase<br>in Rhodopseudomonas palustris. Journal of Biochemistry, 2013, 154, 449-454.                                                           | 1.7  | 2         |
| 16 | Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow<br>(Corvus macrorhynchos) Shown with 16S rRNA Gene-Based Microbial Community Analysis. BioMed<br>Research International, 2013, 2013, 1-5.      | 1.9  | 9         |
| 17 | Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium. Sensors, 2012, 12, 14041-14052.                                                                                                              | 3.8  | 14        |
|    |                                                                                                                                                                                                                                                 |      |           |

18 Photosynthetic fuel cell using purple non-sulfur bacteria. , 2012, , .

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genetic Modification in Bacillus subtilis for Production of C30 Carotenoids. Methods in Molecular<br>Biology, 2012, 892, 197-205.                                                                                                     | 0.9  | 6         |
| 20 | Fluorescent bioassays for toxic metals in milk and yoghurt. BMC Biotechnology, 2012, 12, 76.                                                                                                                                          | 3.3  | 5         |
| 21 | Solid Phase Biosensors for Arsenic or Cadmium Composed of A trans Factor and cis Element Complex.<br>Sensors, 2011, 11, 10063-10073.                                                                                                  | 3.8  | 16        |
| 22 | Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated<br>with a Near-Infrared Light Emitting Diode Array. Journal of Microbiology and Biotechnology, 2011, 21,<br>1306-1311.             | 2.1  | 2         |
| 23 | Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein–DNA interactions. Biosensors and Bioelectronics, 2010, 26, 1466-1473.                    | 10.1 | 14        |
| 24 | Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids<br>produced through β-oxidation of oleic acid in Escherichia coli. Journal of Bioscience and<br>Bioengineering, 2010, 110, 392-396. | 2.2  | 10        |
| 25 | Distribution of Retinal Cone Photoreceptor Oil Droplets, and Identification of Associated<br>Carotenoids in Crow ( <i>Corvus macrorhynchos</i> ). Zoological Science, 2010, 27, 514-521.                                              | 0.7  | 8         |
| 26 | Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple<br>promoter–reporter units in tandem for detection of arsenic. Journal of Bioscience and<br>Bioengineering, 2009, 108, 414-420.            | 2.2  | 37        |
| 27 | Carotenoid production in Bacillus subtilis achieved by metabolic engineering. Biotechnology Letters, 2009, 31, 1789-1793.                                                                                                             | 2.2  | 42        |
| 28 | Functional substitution of the transient membrane-anchor domain inEscherichia coliFtsY with an<br>N-terminal hydrophobic segment ofStreptomyces lividansFtsY. FEMS Microbiology Letters, 2008, 287,<br>85-90.                         | 1.8  | 5         |
| 29 | Novel Carotenoid-Based Biosensor for Simple Visual Detection of Arsenite: Characterization and<br>Preliminary Evaluation for Environmental Application. Applied and Environmental Microbiology, 2008,<br>74, 6730-6738.               | 3.1  | 50        |
| 30 | Applications of Green Mutants Isolated from Purple Bacteria as a Host for Colorimetric Whole-Cell<br>Biosensors. , 2008, , 1359-1363.                                                                                                 |      | 0         |
| 31 | Development of Whole-Cell Biosensors Based on Color Change by Accumulation of Carotenoids.<br>Bunseki Kagaku, 2007, 56, 993-1003.                                                                                                     | 0.2  | Ο         |
| 32 | Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors. Applied Microbiology and Biotechnology, 2007, 76, 1043-1050.                                                    | 3.6  | 19        |
| 33 | Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH2O3: Purification and characterization. Carbohydrate Polymers, 2006, 64, 589-596.                                                                          | 10.2 | 38        |
| 34 | Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Applied Microbiology and Biotechnology, 2006, 70, 397-402.                                                   | 3.6  | 25        |
| 35 | Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Applied<br>Microbiology and Biotechnology, 2006, 73, 332-338.                                                                                  | 3.6  | 60        |
| 36 | Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuousChlamydomonas cultures. Biotechnology and Bioengineering, 2006, 94, 722-729.                                           | 3.3  | 14        |

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Peroxisomal Acyl-CoA Thioesterase Pte1p from Saccharomyces cerevisiae Is Required for Efficient<br>Degradation of Short Straight Chain and Branched Chain Fatty Acids. Journal of Biological Chemistry,<br>2006, 281, 11729-11735.                                     | 3.4 | 31        |
| 38 | Unusual Accumulation of Demethylspheroidene in Anaerobic-Phototrophic Growth of crtA-Deleted<br>Mutants of Rhodovulum sulfidophilum. Current Microbiology, 2005, 51, 193-197.                                                                                              | 2.2 | 9         |
| 39 | Increasing the Carbon Flux toward Synthesis of Short-Chain-Length—Medium-Chain-Length<br>Polyhydroxyalkanoate in the Peroxisome of Saccharomyces cerevisiae through Modification of the<br>β-Oxidation Cycle. Applied and Environmental Microbiology, 2004, 70, 5685-5687. | 3.1 | 11        |
| 40 | Mechanism of Enhancement Effect of Dendrimer on Transdermal Drug Permeation through<br>Polyhydroxyalkanoate Matrix. Journal of Bioscience and Bioengineering, 2004, 96, 537-540.                                                                                           | 2.2 | 1         |
| 41 | Comparative Study of the N-Terminal Hydrophilic Region in Streptomyces lividans and E. coli FtsY.<br>Current Microbiology, 2003, 47, 22-25.                                                                                                                                | 2.2 | 2         |
| 42 | Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer. Journal of Bioscience and Bioengineering, 2003, 95, 541-543.                                                                                                      | 2.2 | 93        |
| 43 | Maximization of hydrogen production ability in high-density suspension ofRhodovulum sulfidophilum<br>cells using intracellular poly(3-hydroxybutyrate) as sole substrate. Biotechnology and<br>Bioengineering, 2003, 81, 474-481.                                          | 3.3 | 50        |
| 44 | Adenoviral transfection of hepatocytes with the thioredoxin gene confers protection against apoptosis and necrosis. Biochemical and Biophysical Research Communications, 2003, 307, 765-770.                                                                               | 2.1 | 17        |
| 45 | Cloning and Molecular Analysis of Poly(3-Hydroxyalkanoate) Biosynthesis Genes in Pseudomonas<br>aureofaciens. Current Microbiology, 2002, 44, 132-135.                                                                                                                     | 2.2 | 10        |
| 46 | Polyethyleneimine/Chitosan Hexamer-Mediated Gene Transfection into Intestinal Epithelial Cell<br>Cultured in Serum-Containing Medium. Journal of Bioscience and Bioengineering, 2002, 94, 81-83.                                                                           | 2.2 | 1         |
| 47 | Repression of starch degradation under anaerobic conditions by irregularly high levels of ATP in Chlamydomonas sp. MGA161. Plant Science, 2001, 160, 629-634.                                                                                                              | 3.6 | 6         |
| 48 | Short Communication: Homology Study of Two Polyhydroxyalkanoate (PHA) Synthases from<br>Pseudomonas Aureofaciens. DNA Sequence, 2001, 12, 281-284.                                                                                                                         | 0.7 | 0         |
| 49 | Effect of bovine small intestine thioredoxin on aldose reductase activity. Chemico-Biological<br>Interactions, 2001, 130-132, 609-615.                                                                                                                                     | 4.0 | 0         |
| 50 | Influence of Sulfate-Reducing Bacteria on Outdoor Hydrogen Production by Photosynthetic<br>Bacterium with Seawater. Current Microbiology, 2000, 40, 210-213.                                                                                                               | 2.2 | 15        |
| 51 | Increase in Thioredoxin Activity of Intestinal Epithelial Cells Mediated by Oxidative Stress Biological and Pharmaceutical Bulletin, 1999, 22, 900-903.                                                                                                                    | 1.4 | 23        |
| 52 | Formation of Lens Aldose Reductase Mixed Disulfides with GSH by UV Irradiation and Its Proteolysis by<br>Lens Calpain. Advances in Experimental Medicine and Biology, 1999, 463, 481-486.                                                                                  | 1.6 | 2         |
| 53 | Excretion of glycerol by the marine Chlamydomonas sp. strain W-80 in high CO2 cultures. Journal of<br>Bioscience and Bioengineering, 1998, 85, 122-124.                                                                                                                    | 0.9 | 29        |
| 54 | Broad spectrum and mode of action of an antibiotic produced byScytonema sp. TISTR 8208 in a seaweed-type bioreactor. Applied Biochemistry and Biotechnology, 1998, 70-72, 249-256.                                                                                         | 2.9 | 12        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Improvement of substrate conversion to molecular hydrogen by three-stage cultivation of a photosynthetic bacterium,Rhodovulum sulfidophilum. Applied Biochemistry and Biotechnology, 1998, 70-72, 301-310.                          | 2.9 | 11        |
| 56 | Broad Spectrum and Mode of Action of an Antibiotic Produced by Scytonema sp. TISTR 8208 in a Seaweed-Type Bioreactor. , 1998, , 249-256.                                                                                            |     | 1         |
| 57 | Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conversion and Management, 1997, 38, S533-S537.                                                                                            | 9.2 | 23        |
| 58 | Factors affecting polyhydroxybutyrate biosynthesis in the marine photosynthetic<br>bacteriumRhodopseudomonas sp. strain W-1S. Applied Biochemistry and Biotechnology, 1996, 57-58,<br>361-366.                                      | 2.9 | 9         |
| 59 | Acquisition of the ability to grow under autotrophic conditions by heterotrophic bacteria through the introduction of DNA fragments from hydrogen-oxidizing bacteria. Applied Biochemistry and Biotechnology, 1996, 57-58, 367-373. | 2.9 | 0         |
| 60 | Acceleration of Starch Degradation by Suppression of H2Evolution inChlamydomonassp. MGA161.<br>Bioscience, Biotechnology and Biochemistry, 1996, 60, 975-978.                                                                       | 1.3 | 6         |
| 61 | Continuous antibiotic production by an immobilized cyanobacterium in a seaweed-type bioreactor.<br>Journal of Applied Phycology, 1995, 7, 135-139.                                                                                  | 2.8 | 9         |
| 62 | Hydrogen production by photosynthetic microorganisms. Energy Conversion and Management, 1995, 36, 903-906.                                                                                                                          | 9.2 | 20        |
| 63 | Antibiotic production by the immobilized cyanobacterium,Scytonema sp. TISTR 8208, in a seaweed-type photobioreactor. Journal of Applied Phycology, 1994, 6, 539-543.                                                                | 2.8 | 27        |
| 64 | Enhancement of starch degradation by CO2 in a marine green alga, Chlamydomonas sp. MGA161. Journal of Bioscience and Bioengineering, 1994, 78, 383-385.                                                                             | 0.9 | 5         |
| 65 | Removal of inhibition by ammonium ion in nitrogenase-dependent hydrogen evolution of a marine photosynthetic bacterium,Rhodopseudomonas sp. strain W-1S. Applied Biochemistry and Biotechnology, 1994, 45-46, 429-436               | 2.9 | 10        |