
Dionysios A Bournas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7526821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexural Strengthening of Two-Way RC Slabs with Cut Openings Using Textile-Reinforced Mortar Composites. Journal of Composites for Construction, 2021, 25, .	1.7	7
2	Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 2021, 240, 112273.	2.6	51
3	A unified macro-modelling approach for masonry-infilled RC frames strengthened with composite materials. Engineering Structures, 2020, 223, 111161.	2.6	12
4	Confinement of masonry columns with textile-reinforced mortar jackets. Construction and Building Materials, 2020, 258, 120343.	3.2	23
5	Integrated Structural and Energy Retrofitting of Masonry Walls: Effect of In-Plane Damage on the Out-of-Plane Response. Journal of Composites for Construction, 2020, 24, .	1.7	24
6	Energy performance of existing residential buildings in Europe: A novel approach combining energy with seismic retrofitting. Energy and Buildings, 2020, 223, 110024.	3.1	99
7	Concrete confinement with TRM versus FRP jackets at elevated temperatures. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	35
8	A gradient elastic homogenisation model for brick masonry. Engineering Structures, 2020, 208, 110311.	2.6	13
9	Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement. Engineering Structures, 2020, 207, 110002.	2.6	18
10	TRM strengthening of masonry arches: An experimental investigation on the effect of strengthening layout and textile fibre material. Composites Part B: Engineering, 2019, 173, 106765.	5.9	25
11	Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review. Journal of Composites for Construction, 2019, 23, .	1.7	279
12	Out-of-Plane Strengthening of Masonry-Infilled RC Frames with Textile-Reinforced Mortar Jackets. Journal of Composites for Construction, 2019, 23, .	1.7	69
13	Concurrent seismic and energy retrofitting of RC and masonry building envelopes using inorganic textile-based composites combined with insulation materials: A new concept. Composites Part B: Engineering, 2018, 148, 166-179.	5.9	95
14	Shear strengthening of concrete members with TRM jackets: Effect of shear span-to-depth ratio, material and amount of external reinforcement. Composites Part B: Engineering, 2018, 137, 184-201.	5.9	65
15	On the design of shear-strengthened RC members through the use of textile reinforced mortar overlays. Composites Part B: Engineering, 2018, 147, 178-196.	5.9	34
16	Flexural Strengthening of Two-Way RC Slabs with Textile-Reinforced Mortar: Experimental Investigation and Design Equations. Journal of Composites for Construction, 2017, 21, .	1.7	66
17	Bond between TRM versus FRP composites and concrete at high temperatures. Composites Part B: Engineering, 2017, 127, 150-165.	5.9	101
18	TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures. Construction and Building Materials, 2017, 154, 424-437.	3.2	110

DIONYSIOS A BOURNAS

#	Article	IF	CITATIONS
19	Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Construction and Building Materials, 2017, 151, 279-291.	3.2	161
20	Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors. Composites Part B: Engineering, 2016, 95, 225-239.	5.9	99
21	Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation. Composites Part B: Engineering, 2016, 98, 350-361.	5.9	102
22	Towards a Comprehensive Asset Integrity Management (AIM) Approach for European Infrastructures. Transportation Research Procedia, 2016, 14, 4060-4069.	0.8	4
23	TRM vs FRP jacketing in shear strengthening of concrete members subjected to high temperatures. Composites Part B: Engineering, 2016, 106, 190-205.	5.9	122
24	Background to the European seismic design provisions for retrofitting RC elements using FRP materials. Structural Concrete, 2016, 17, 194-219.	1.5	24
25	Fiber Reinforced Composites with Cementitious (Inorganic) Matrix. RILEM State-of-the-Art Reports, 2016, , 349-392.	0.3	25
26	Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B: Engineering, 2015, 77, 338-348.	5.9	196
27	Tensile capacity of FRP anchors in connecting FRP and TRM sheets to concrete. Engineering Structures, 2015, 82, 72-81.	2.6	58
28	Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening. Bulletin of Earthquake Engineering, 2014, 12, 2383-2404.	2.3	165
29	Pseudodynamic tests on a full-scale 3-storey precast concrete building: Global response. Engineering Structures, 2013, 57, 594-608.	2.6	86
30	Pseudodynamic tests on a full-scale 3-storey precast concrete building: Behavior of the mechanical connections and floor diaphragms. Engineering Structures, 2013, 57, 609-627.	2.6	102
31	Bar Buckling in RC Columns Confined with Composite Materials. Journal of Composites for Construction, 2011, 15, 393-403.	1.7	64
32	Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Engineering Structures, 2011, 33, 2049-2062.	2.6	92
33	Bond Strength of Lap-Spliced Bars in Concrete Confined with Composite Jackets. Journal of Composites for Construction, 2011, 15, 156-167.	1.7	67
34	Textile-Reinforced Mortar versus FRP Jacketing in Seismic Retrofitting of RC Columns with Continuous or Lap-Spliced Deformed Bars. Journal of Composites for Construction, 2009, 13, 360-371.	1.7	115