Barbara Mazzolai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7526780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Geotechnique, 2022, 72, 687-705.	2.2	74
2	Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications. Matter, 2022, 5, 390-429.	5.0	54
3	A Plant Tendril-Like Soft Robot That Grasps and Anchors by Exploiting its Material Arrangement. IEEE Robotics and Automation Letters, 2022, 7, 5191-5197.	3.3	14
4	Multisource energy conversion in plants with soft epicuticular coatings. Energy and Environmental Science, 2022, 15, 2545-2556.	15.6	11
5	A plant-hybrid system for wind monitoring connected with social media. , 2022, , .		1
6	3D micromolding of seed-like probes for self-burying soft robots. , 2022, , .		3
7	The softness distribution index: towards the creation of guidelines for the modeling of soft-bodied robots. International Journal of Robotics Research, 2021, 40, 197-223.	5.8	9
8	Transcriptional Regulation of Genes Involved in Zinc Uptake, Sequestration and Redistribution Following Foliar Zinc Application to Medicago sativa. Plants, 2021, 10, 476.	1.6	17
9	Bioinspired materials and approaches for soft robotics. MRS Bulletin, 2021, 46, 345-349.	1.7	5
10	3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomaterialia, 2021, 122, 26-49.	4.1	175
11	Ultraconformable, Selfâ€Adhering Surface Electrodes for Measuring Electrical Signals in Plants. Advanced Materials Technologies, 2021, 6, 2001182.	3.0	15
12	Organic Electronics: Ultraconformable, Selfâ€Adhering Surface Electrodes for Measuring Electrical Signals in Plants (Adv. Mater. Technol. 4/2021). Advanced Materials Technologies, 2021, 6, 2170024.	3.0	0
13	Support localization strategy for growing robots aided by light perception inspired by climbing plants. , 2021, , .		2
14	Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environmental Microbiology, 2021, 23, 5883-5900.	1.8	14
15	Selective Stiffening in Soft Actuators by Triggered Phase Transition of Hydrogelâ€Filled Elastomers. Advanced Functional Materials, 2021, 31, 2101121.	7.8	17
16	Sensorized Foam Actuator with Intrinsic Proprioception and Tunable Stiffness Behavior for Soft Robots. Advanced Intelligent Systems, 2021, 3, 2100022.	3.3	4
17	Conditions for the emergence of circumnutations in plant roots. PLoS ONE, 2021, 16, e0252202.	1.1	7
18	Editorial: Generation Growbots: Materials, Mechanisms, and Biomimetic Design for Growing Robots. Frontiers in Robotics and Al, 2021, 8, 711942.	2.0	3

#	Article	IF	CITATIONS
19	A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots. Advanced Materials Technologies, 2021, 6, 2100437.	3.0	18
20	Biohybrid generators based on living plants and artificial leaves: influence of leaf motion and real wind outdoor energy harvesting. Bioinspiration and Biomimetics, 2021, 16, 055009.	1.5	10
21	Towards new frontiers for distributed environmental monitoring based on an ecosystem of plant seed-like soft robots. , 2021, , .		8
22	Plant-like hooked miniature machines for on-leaf sensing and delivery. Communications Materials, 2021, 2, .	2.9	16
23	Morphological Computation in Plant Seeds for a New Generation of Self-Burial and Flying Soft Robots. Frontiers in Robotics and Al, 2021, 8, 797556.	2.0	6
24	Quantitative Measurements of Octopus vulgaris Arms for Bioinspired Soft Robotics. Cognitive Systems Monographs, 2020, , 3-14.	0.1	3
25	Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation. Materials Science and Engineering C, 2020, 107, 110197.	3.8	21
26	Passive Morphological Adaptation for Obstacle Avoidance in a Self-Growing Robot Produced by Additive Manufacturing. Soft Robotics, 2020, 7, 85-94.	4.6	40
27	Plant root penetration and growth as a mechanical inclusion problem. International Journal of Non-Linear Mechanics, 2020, 120, 103344.	1.4	5
28	Optimized production of a highâ€performance hybrid biomaterial: biomineralized spider silk for bone tissue engineering. Journal of Applied Polymer Science, 2020, 137, 48739.	1.3	15
29	Climbing Plantâ€Inspired Micropatterned Devices for Reversible Attachment. Advanced Functional Materials, 2020, 30, 2003380.	7.8	23
30	Micropatterned Devices: Climbing Plantâ€Inspired Micropatterned Devices for Reversible Attachment (Adv. Funct. Mater. 38/2020). Advanced Functional Materials, 2020, 30, 2070256.	7.8	1
31	A protein-coated micro-sucker patch inspired by octopus for adhesion in wet conditions. Scientific Reports, 2020, 10, 15480.	1.6	21
32	The Bio-Engineering Approach for Plant Investigations and Growing Robots. A Mini-Review. Frontiers in Robotics and AI, 2020, 7, 573014.	2.0	18
33	Optimal control of plant root tip dynamics in soil. Bioinspiration and Biomimetics, 2020, 15, 056006.	1.5	10
34	Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton. Frontiers in Neurorobotics, 2020, 14, 31.	1.6	37
35	3D printed composites from heat extruded polycaprolactone/sodium alginate filaments and their heavy metal adsorption properties. Materials Chemistry Frontiers, 2020, 4, 2472-2483.	3.2	30
36	Taking inspiration from climbing plants: methodologies and benchmarks—a review. Bioinspiration and Biomimetics, 2020, 15, 031001.	1.5	38

#	Article	IF	CITATIONS
37	A vision for future bioinspired and biohybrid robots. Science Robotics, 2020, 5, .	9.9	70
38	Plantâ€Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers. Advanced Materials Interfaces, 2020, 7, 1901310.	1.9	50
39	Autonomic perspiration in 3D-printed hydrogel actuators. Science Robotics, 2020, 5, .	9.9	121
40	The role of hairs in the adhesion of octopus suckers: a hierarchical peeling approach. Bioinspiration and Biomimetics, 2020, 15, 035006.	1.5	13
41	Living Plantâ€Hybrid Generators for Multidirectional Wind Energy Conversion. Energy Technology, 2020, 8, 2000236.	1.8	31
42	A Soft Sensorized Foot Module to Understand Anisotropic Terrains During Soft Robot Locomotion. IEEE Robotics and Automation Letters, 2020, 5, 4055-4061.	3.3	4
43	HyLength: a semi-automated digital image analysis tool for measuring the length of roots and fungal hyphae of dense mycelia. Mycorrhiza, 2020, 30, 229-242.	1.3	8
44	Biohybrid Wind Energy Generators Based on Living Plants. Lecture Notes in Computer Science, 2020, , 234-244.	1.0	2
45	Biomechanical Characterization of Hook-Climber Stems for Soft Robotic Applications. Lecture Notes in Computer Science, 2020, , 97-103.	1.0	0
46	An Image-Based Method for the Morphological Analysis of Tendrils with 2D Piece-Wise Clothoid Approximation Model. Lecture Notes in Computer Science, 2020, , 80-91.	1.0	1
47	INFORA: A Novel Inflatable Origami-based Actuator. , 2019, , .		2
48	A Vacuum Powered Soft Textile-Based Clutch. Actuators, 2019, 8, 47.	1.2	14
49	Rose-Inspired Micro-device with Variable Stiffness for Remotely Controlled Release of Objects in Robotics. Lecture Notes in Computer Science, 2019, , 122-133.	1.0	8
50	Octopusâ€Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments. Advanced Intelligent Systems, 2019, 1, 1900041.	3.3	73
51	Suberin/ <i>trans-</i> Cinnamaldehyde Oil Nanoparticles with Antimicrobial Activity and Anticancer Properties When Loaded with Paclitaxel. ACS Applied Bio Materials, 2019, 2, 3484-3497.	2.3	10
52	Control strategies for cleaning robots in domestic applications: A comprehensive review. International Journal of Advanced Robotic Systems, 2019, 16, 172988141985743.	1.3	36
53	Characterization of the Growing From the Tip as Robot Locomotion Strategy. Frontiers in Robotics and Al, 2019, 6, 45.	2.0	11
54	Octopusâ€Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments. Advanced Intelligent Systems, 2019, 1, 1970061.	3.3	6

#	Article	IF	CITATIONS
55	Remotely Lightâ€Powered Soft Fluidic Actuators Based on Plasmonicâ€Driven Phase Transitions in Elastic Constraint. Advanced Materials, 2019, 31, e1905671.	11.1	26
56	A Wearable Sensory Textileâ€Based Clutch with High Blocking Force. Advanced Engineering Materials, 2019, 21, 1900886.	1.6	14
57	Antagonistic Pneumatic Actuators with Variable Stiffness for Soft Robotic Applications. , 2019, , .		11
58	Dynamic Obstacles Detection for Robotic Soil Explorations*. , 2019, , .		1
59	Fluid-structure interaction study of spider's hair flow-sensing system. Materials Today: Proceedings, 2019, 7, 418-425.	0.9	5
60	A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nature Communications, 2019, 10, 344.	5.8	130
61	Soft Robotics. Biomimetics, 2019, 4, 22.	1.5	2
62	Easy, Scalable, Robust, Micropatterned Silk Fibroin Cell Substrates. Advanced Materials Interfaces, 2019, 6, 1801822.	1.9	29
63	Imaging and mechanical characterization of different junctions in spider orb webs. Scientific Reports, 2019, 9, 5776.	1.6	24
64	Finite-Element Modeling and Design of a Pneumatic Braided Muscle Actuator With Multifunctional Capabilities. IEEE/ASME Transactions on Mechatronics, 2019, 24, 109-119.	3.7	25
65	Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics. Biosystems and Biorobotics, 2019, , 49-52.	0.2	5
66	Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles. Neuromethods, 2018, , 109-120.	0.2	0
67	Three-dimensional reconstruction of root shape in the moth orchid Phalaenopsis sp.: a biomimicry methodology for robotic applications. BMC Research Notes, 2018, 11, 258.	0.6	4
68	Approximating gecko setae via direct laser lithography. Smart Materials and Structures, 2018, 27, 075009.	1.8	16
69	Natural Triboelectric Generators: Energy Conversion at the Cuticle of Living Plants (Adv. Funct.) Tj ETQq1 1 0.78	84314 rgB ⁻ 7.8	T /Overlock 1
70	Continuous Growth in Plant-Inspired Robots Through 3D Additive Manufacturing. , 2018, , .		10
71	The Rise of the Robots: The European Robotics Flagship [Regional Spotlight]. IEEE Robotics and Automation Magazine, 2018, 25, 121-122.	2.2	1
72	Energy Conversion at the Cuticle of Living Plants. Advanced Functional Materials, 2018, 28, 1806689.	7.8	49

#	Article	IF	CITATIONS
73	A study on plant root apex morphology as a model for soft robots moving in soil. PLoS ONE, 2018, 13, e0197411.	1.1	16
74	Shape estimation based on Kalman filtering: Towards fully soft proprioception. , 2018, , .		22
75	Toward Growing Robots: A Historical Evolution from Cellular to Plant-Inspired Robotics. Frontiers in Robotics and AI, 2018, 5, 16.	2.0	51
76	From plant root's sloughing and radial expansion mechanisms to a soft probe for soil exploration. , 2018, , .		3
77	Swarming Behavior Emerging from the Uptake–Kinetics Feedback Control in a Plant-Root-Inspired Robot. Applied Sciences (Switzerland), 2018, 8, 47.	1.3	13
78	Modular Continuum Manipulator: Analysis and Characterization of Its Basic Module. Biomimetics, 2018, 3, 3.	1.5	31
79	Artificial System Inspired by Climbing Mechanism of Galium Aparine Fabricated via 3D Laser Lithography. Lecture Notes in Computer Science, 2018, , 168-178.	1.0	9
80	A plant-inspired kinematic model for growing robots. , 2018, , .		9
81	Soft sucker shoe for anti-slippage application. , 2018, , .		2
82	An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements. Bioinspiration and Biomimetics, 2018, 13, 015003.	1.5	33
83	Growth and tropism. , 2018, , .		1
84	Gold Nanoshell-Mediated Remote Myotube Activation. ACS Nano, 2017, 11, 2494-2508.	7.3	69
85	A plant-inspired robot with soft differential bending capabilities. Bioinspiration and Biomimetics, 2017, 12, 015001.	1.5	60
86	Can a robot grow? Plants give us the answer. Proceedings of SPIE, 2017, , .	0.8	3
87	Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies. Soft Robotics, 2017, 4, 211-223.	4.6	161
88	Towards ultra-responsive biodegradable polysaccharide humidity sensors. Materials Today Chemistry, 2017, 6, 1-12.	1.7	18
89	A Biomechanical Characterization of Plant Root Tissues by Dynamic Nanoindentation Technique for Biomimetic Technologies. Lecture Notes in Computer Science, 2017, , 532-536.	1.0	2
90	Chlorophyll derivatives enhance invertebrate red-light and ultraviolet phototaxis. Scientific Reports, 2017, 7, 3374.	1.6	8

#	Article	IF	CITATIONS
91	Anchoring like octopus: biologically inspired soft artificial sucker. Journal of the Royal Society Interface, 2017, 14, 20170395.	1.5	52
92	Active-Braid, a Bioinspired Continuum Manipulator. IEEE Robotics and Automation Letters, 2017, 2, 2104-2110.	3.3	17
93	Plant-Inspired Growing Robots. Biosystems and Biorobotics, 2017, , 57-63.	0.2	15
94	SIMBA: Tendon-Driven Modular Continuum Arm with Soft Reconfigurable Gripper. Frontiers in Robotics and AI, 2017, 4, .	2.0	45
95	Micromechanical Analysis of Soft Tactile Sensors. Frontiers in Materials, 2017, 4, .	1.2	0
96	Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography. Micromachines, 2017, 8, 366.	1.4	8
97	Soft Plant Robotic Solutions: Biological Inspiration and Technological Challenges. Emergence, Complexity and Computation, 2017, , 687-707.	0.2	1
98	Dry Adhesion of Artificial Gecko Setae Fabricated via Direct Laser Lithography. Lecture Notes in Computer Science, 2017, , 631-636.	1.0	6
99	Soft-Legged Wheel-Based Robot with Terrestrial Locomotion Abilities. Frontiers in Robotics and AI, 2016, 3, .	2.0	8
100	Circumnutations as a penetration strategy in a plant-root-inspired robot. , 2016, , .		33
101	Plant root tortuosity: an indicator of root path formation in soil with different composition and density. Annals of Botany, 2016, 118, 685-698.	1.4	64
102	Osmolyte cooperation affects turgor dynamics in plants. Scientific Reports, 2016, 6, 30139.	1.6	17
103	Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 2016, 1, .	9.9	987
104	Unveiling the kinematics of the avoidance response in maize (Zea mays) primary roots. Biologia (Poland), 2016, 71, 161-168.	0.8	1
105	Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds. ACS Applied Materials & Interfaces, 2016, 8, 25019-25023.	4.0	23
106	Variable Stiffness Fiber with Selfâ€Healing Capability. Advanced Materials, 2016, 28, 10142-10148.	11.1	142
107	Lessons from Animals and Plants: The Symbiosis of Morphological Computation and Soft Robotics. IEEE Robotics and Automation Magazine, 2016, 23, 107-114.	2.2	62
100	Constraint of Nature 2016 526 400 401		

108 Generation soft. Nature, 2016, 536, 400-401.

13.7 28

#	Article	IF	CITATIONS
109	Sculpting Soft Machines. Soft Robotics, 2016, 3, 101-108.	4.6	26
110	Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration and Biomimetics, 2016, 11, 016001.	1.5	22
111	Biology for Robotics - A Multidisciplinary Approach to a Researcher's Life [Women in Engineering]. IEEE Robotics and Automation Magazine, 2016, 23, 114-115.	2.2	1
112	Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016, 351, 1071-1074.	6.0	1,106
113	Electrorheological Valves for Flexible Fluidic Actuators. Soft Robotics, 2016, 3, 34-41.	4.6	56
114	Modulation of cellular responses: The two-photon polymerization approach in the control of the physical micro/nanoenvironment. , 2015, 2015, 1865-8.		0
115	Revealing bending and force in a soft body through a plant root inspired approach. Scientific Reports, 2015, 5, 8788.	1.6	45
116	Octopus-inspired robotics. Bioinspiration and Biomimetics, 2015, 10, 030301.	1.5	1
117	Cryoâ€scanning electron microscopy investigation of the <i>Octopus Vulgaris</i> arm structures for the design of an octopusâ€like arm artefact. Microscopy Research and Technique, 2015, 78, 1133-1145.	1.2	2
118	Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. International Journal of Nanomedicine, 2015, 10, 433.	3.3	32
119	Hypergravity Stimulation Enhances PC12 Neuron-Like Cell Differentiation. BioMed Research International, 2015, 2015, 1-10.	0.9	30
120	3D Micropatterned Surface Inspired by <i>Salvinia molesta</i> via Direct Laser Lithography. ACS Applied Materials & Interfaces, 2015, 7, 25560-25567.	4.0	103
121	Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation. ACS Applied Materials & Interfaces, 2015, 7, 25574-25579.	4.0	113
122	Hierarchical surface patterning for triboelectric nanogenerators and sensors. , 2015, , .		3
123	Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy. International Journal of Pharmaceutics, 2015, 481, 56-63.	2.6	48
124	On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Mathematical Biosciences, 2015, 262, 105-116.	0.9	17
125	Chemical synthesis of a biodegradable PEGylated copolymer from $\hat{I}\mu$ -caprolactone and \hat{I}^3 -valerolactone: evaluation of reaction and functional properties. Journal of Polymer Research, 2015, 22, 1.	1.2	14
126	Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators. Advanced Materials, 2015, 27, 1668-1675.	11.1	267

#	Article	IF	CITATIONS
127	Triboelectric smart machine elements and self-powered encoder. Nano Energy, 2015, 13, 92-102.	8.2	17
128	Design of a compact bistable mechanism based on dielectric elastomer actuators. Meccanica, 2015, 50, 2741-2749.	1.2	26
129	Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano, 2015, 9, 7678-7689.	7.3	236
130	A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015, 17, 46.	1.4	17
131	Octopus-like suction cups: from natural to artificial solutions. Bioinspiration and Biomimetics, 2015, 10, 035004.	1.5	46
132	Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus, 2015, 5, 20140050.	1.5	51
133	Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules. Future Medicinal Chemistry, 2015, 7, 123-138.	1.1	25
134	Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale, 2015, 7, 2841-2850.	2.8	77
135	Hairy suckers: the surface microstructure and its possible functional significance in the <i>Octopus vulgaris</i> sucker. Beilstein Journal of Nanotechnology, 2014, 5, 561-565.	1.5	60
136	Another Lesson from Plants: The Forward Osmosis-Based Actuator. PLoS ONE, 2014, 9, e102461.	1.1	38
137	Plants as Model in Biomimetics and Biorobotics: New Perspectives. Frontiers in Bioengineering and Biotechnology, 2014, 2, 2.	2.0	65
138	The potential of recombinant human elastin-like polypeptides for drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 1507-1512.	2.4	17
139	Recombinant Human Elastinâ€ŀike Magnetic Microparticles for Drug Delivery and Targeting. Macromolecular Bioscience, 2014, 14, 632-642.	2.1	17
140	Pulsatile Viscous Flows in Elliptical Vessels and Annuli: Solution to the Inverse Problem, with Application to Blood and Cerebrospinal Fluid Flow. SIAM Journal on Applied Mathematics, 2014, 74, 40-59.	0.8	9
141	Flexible Threeâ€Axial Force Sensor for Soft and Highly Sensitive Artificial Touch. Advanced Materials, 2014, 26, 2659-2664.	11.1	383
142	Towards accurate robot-assisted neuroendoscopy using an ergonomic handling interface and a lightweight robot. , 2014, 2014, 6876-9.		1
143	Sensors: Flexible Threeâ€Axial Force Sensor for Soft and Highly Sensitive Artificial Touch (Adv. Mater.) Tj ETQq1	1 0,78431 11.1	4 rgBT /Overl
144	Navigation of Magnetic Microrobots With Different User Interaction Levels. IEEE Transactions on Automation Science and Engineering, 2014, 11, 818-827.	3.4	15

#	Article	IF	CITATIONS
145	Active-elastic bistable minimum energy structures. Applied Physics Letters, 2014, 105, .	1.5	19
146	Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration and Biomimetics, 2014, 9, 046002.	1.5	68
147	Structure and mechanical properties of <i>Octopus vulgaris</i> suckers. Journal of the Royal Society Interface, 2014, 11, 20130816.	1.5	78
148	Influence of nanoparticleâ€embedded polymeric surfaces on cellular adhesion, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 2652-2661.	2.1	18
149	Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	17
150	Cerium Oxide Nanoparticles Inhibit Adipogenesis in Rat Mesenchymal Stem Cells: Potential Therapeutic Implications. Pharmaceutical Research, 2014, 31, 2952-2962.	1.7	38
151	Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 495-506.	1.1	69
152	Highâ€₽erformance, Totally Flexible, Tubular Microbial Fuel Cell. ChemElectroChem, 2014, 1, 1994-1999.	1.7	21
153	A Novel Soft Metalâ€Polymer Composite for Multidirectional Pressure Energy Harvesting. Advanced Energy Materials, 2014, 4, 1400024.	10.2	30
154	Hierarchical multiple peeling simulations. RSC Advances, 2014, 4, 25447-25452.	1.7	18
155	Nanostructured Brownian Surfaces Prepared through Two-Photon Polymerization: Investigation of Stem Cell Response. ACS Nano, 2014, 8, 11869-11882.	7.3	27
156	Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Applied Surface Science, 2014, 323, 82-87.	3.1	25
157	NMR Relaxation Enhancement of Water Protons by Gd-Doped Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2014, 118, 6473-6479.	1.5	4
158	Gold Nanoshell/Polysaccharide Nanofilm for Controlled Laser-Assisted Tissue Thermal Ablation. ACS Nano, 2014, 8, 5552-5563.	7.3	30
159	Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine, 2014, 9, 773-788.	1.7	61
160	Emerging Technologies Inspired by Plants. , 2014, , 111-132.		4
161	The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomaterialia, 2014, 10, 4304-4313.	4.1	92
162	Detection of Fluorescent Nanoparticle Interactions with Primary Immune Cell Subpopulations by Flow Cytometry. Journal of Visualized Experiments, 2014, , .	0.2	7

#	Article	IF	CITATIONS
163	Wearable Self Sufficient MFC Communication System Powered by Urine. Lecture Notes in Computer Science, 2014, , 131-138.	1.0	4
164	A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors. PLoS ONE, 2014, 9, e90139.	1.1	117
165	Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method. Nanoscale, 2013, 5, 3505.	2.8	12
166	Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom. Bioinspiration and Biomimetics, 2013, 8, 025002.	1.5	28
167	PMMA/Polysaccharides Nanofilm Loaded with Adenosine Deaminase Inhibitor for Targeted Anti-inflammatory Drug Delivery. Langmuir, 2013, 29, 13190-13197.	1.6	32
168	A novel tracking tool for the analysis of plant-root tip movements. Bioinspiration and Biomimetics, 2013, 8, 025004.	1.5	19
169	Patterned Free-Standing Conductive Nanofilms for Ultraconformable Circuits and Smart Interfaces. ACS Applied Materials & Interfaces, 2013, 5, 9461-9469.	4.0	35
170	Mechanical and rheological behavior of pNIPAAM crosslinked macrohydrogel. Reactive and Functional Polymers, 2013, 73, 1306-1318.	2.0	38
171	Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter, 2013, 9, 11405.	1.2	42
172	Bio/non-bio interfaces: A straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Colloids and Surfaces B: Biointerfaces, 2013, 105, 144-151.	2.5	31
173	Microwrinkled Conducting Polymer Interface for Anisotropic Multicellular Alignment. ACS Applied Materials & Interfaces, 2013, 5, 573-584.	4.0	106
174	Boron Nitride Nanotubes: Biocompatibility and Potential Spillâ€Over in Nanomedicine. Small, 2013, 9, 1672-1685.	5.2	186
175	Measurements of octopus arm elongation: Evidence of differences by body size and gender. Journal of Experimental Marine Biology and Ecology, 2013, 447, 160-164.	0.7	15
176	Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation. International Journal of Pharmaceutics, 2013, 444, 85-88.	2.6	94
177	Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids and Surfaces B: Biointerfaces, 2013, 111, 142-149.	2.5	45
178	Characterization of Free-Standing PEDOT:PSS/Iron Oxide Nanoparticle Composite Thin Films and Application As Conformable Humidity Sensors. ACS Applied Materials & Interfaces, 2013, 5, 6324-6332.	4.0	106
179	Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion. Pharmaceutical Research, 2013, 30, 2133-2145.	1.7	90
180	Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2013, 102, 312-320.	2.5	93

#	Article	IF	CITATIONS
181	Thin film free-standing PEDOT:PSS/SU8 bilayer microactuators. Journal of Micromechanics and Microengineering, 2013, 23, 117004.	1.5	29
182	Two-Photon Polymerization of Sub-micrometric Patterned Surfaces: Investigation of Cell-Substrate Interactions and Improved Differentiation of Neuron-like Cells. ACS Applied Materials & Interfaces, 2013, 5, 13012-13021.	4.0	90
183	Soft, Stretchable and Conductive Biointerfaces for Bio-hybrid Tactile Sensing Investigation. Lecture Notes in Computer Science, 2013, , 353-355.	1.0	2
184	Nanoscaffolds for Guided Cardiac Repair: The New Therapeutic Challenge of Regenerative Medicine. Journal of Nanomaterials, 2013, 2013, 1-16.	1.5	9
185	Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing. Sensors, 2013, 13, 6578-6604.	2.1	44
186	Free-Standing PEDOT:PSS/PLA Bilayer Nanosheets with Ink-Jet Patterned Microelectrodes: Towards the Development of Ultra-Thin, Conformable, Floating Circuits and Smart Biointerfaces Materials Research Society Symposia Proceedings, 2013, 1530, 1.	0.1	1
187	Robotic mechanism for soil penetration inspired by plant root. , 2013, , .		45
188	How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids?. Applied Physics Letters, 2013, 102, .	1.5	15
189	Design of a small sized self-powered robot for monitoring the ocean water column. , 2013, , .		1
190	Reversible Heat-Induced Microwrinkling of PEDOT:PSS Nanofilm Surface Over a Monodomain Liquid Crystal Elastomer. Molecular Crystals and Liquid Crystals, 2013, 572, 40-49.	0.4	12
191	Gd-doped BNNTs asT2-weighted MRI contrast agents. Nanotechnology, 2013, 24, 315101.	1.3	13
192	Smart solutions from the plant kingdom. Bioinspiration and Biomimetics, 2013, 8, 020301.	1.5	6
193	Propulsion of swimming microrobots inspired by <i>metachronal waves</i> in ciliates: from biology to material specifications. Bioinspiration and Biomimetics, 2013, 8, 046004.	1.5	34
194	Octopus Suckers Identification Code (OSIC). Marine and Freshwater Behaviour and Physiology, 2013, 46, 447-453.	0.4	5
195	Barium titanate core – gold shell nanoparticles for hyperthermia treatments. International Journal of Nanomedicine, 2013, 8, 2319.	3.3	24
196	Octopus-Inspired Innovative Suction Cups. Lecture Notes in Computer Science, 2013, , 368-370.	1.0	9
197	Embodied Behavior of Plant Roots in Obstacle Avoidance. Lecture Notes in Computer Science, 2013, , 431-433.	1.0	2
198	Plant Root Strategies for Robotic Soil Penetration. Lecture Notes in Computer Science, 2013, , 447-449.	1.0	11

#	Article	IF	CITATIONS
199	What Can We Learn from the Octopus?. , 2013, , 89-102.		6
200	The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers. PLoS ONE, 2013, 8, e65074.	1.1	117
201	Bioinspired Design and Energetic Feasibility of an Autonomous Swimming Microrobot. Lecture Notes in Computer Science, 2013, , 415-417.	1.0	0
202	Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration and Biomimetics, 2012, 7, 025005.	1.5	218
203	Modeling of a propulsion mechanism for swimming microrobots inspired by ciliate metachronal waves. , 2012, , .		2
204	Wireless swimming microrobots: Design and development of a 2 DoF magnetic-based system. , 2012, , .		4
205	Analysis and characterization of a robotic probe inspired by the plant root apex. , 2012, , .		7
206	A bio-inspired approach towards the development of soft amoeboid microrobots. , 2012, , .		6
207	Innovative soft robots based on electro-rheological fluids. , 2012, , .		41
208	Design and development of innovative adhesive suckers inspired by the tube feet of sea urchins. , 2012, , .		14
209	Artificial adhesion mechanisms inspired by octopus suckers. , 2012, , .		40
210	Soft Robot Arm Inspired by the Octopus. Advanced Robotics, 2012, 26, 709-727.	1.1	778
211	Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration and Biomimetics, 2012, 7, 025004.	1.5	93
212	Design and development of a soft robot with crawling and grasping capabilities. , 2012, , .		49
213	Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment. Biomedical Microdevices, 2012, 14, 1069-1076.	1.4	28
214	Analysis of movement in primary maize roots. Biologia (Poland), 2012, 67, 517-524.	0.8	13
215	Micro-wrinkled palladium surface for hydrogen sensing and switched detection of lower flammability limit. International Journal of Hydrogen Energy, 2012, 37, 17529-17539.	3.8	31
216	Synthesis and characterization of new barium titanate core–gold shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 247-254.	2.3	10

#	Article	IF	CITATIONS
217	Design and development of a soft robotic octopus arm exploiting embodied intelligence. , 2012, , .		47
218	Swarming Behavior in Plant Roots. PLoS ONE, 2012, 7, e29759.	1.1	45
219	Origin of Polar Order in Dense Suspensions of Phototactic Micro-Swimmers. PLoS ONE, 2012, 7, e38895.	1.1	6
220	Root-Soil Interaction Models for Designing Adaptive Exploring Robotic Systems. Lecture Notes in Computer Science, 2012, , 388-389.	1.0	0
221	Design of Adhesion Device Inspired by Octopus Sucker. Lecture Notes in Computer Science, 2012, , 400-401.	1.0	1
222	Bio-inspired Design of an Artificial Muscular-Hydrostat Unit for Soft Robotic Systems. Lecture Notes in Computer Science, 2012, , 375-376.	1.0	0
223	An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration and Biomimetics, 2011, 6, 036002.	1.5	368
224	DustCart, an autonomous robot for door-to-door garbage collection: From DustBot project to the experimentation in the small town of Peccioli. , 2011, , .		39
225	Non-invasive study of <i>Octopus vulgaris</i> arm morphology using ultrasound. Journal of Experimental Biology, 2011, 214, 3727-3731.	0.8	35
226	Mapping multiple gas/odor sources in an uncontrolled indoor environment using a Bayesian occupancy grid mapping based method. Robotics and Autonomous Systems, 2011, 59, 988-1000.	3.0	57
227	Adhesion Mechanisms Inspired by Octopus Suckers. Procedia Computer Science, 2011, 7, 192-193.	1.2	13
228	Novel Smart Concepts for Designing Swimming Soft Microrobots. Procedia Computer Science, 2011, 7, 264-265.	1.2	4
229	The Robot DustCart. IEEE Robotics and Automation Magazine, 2011, 18, 59-67.	2.2	6
230	A Miniaturized Mechatronic System Inspired by Plant Roots for Soil Exploration. IEEE/ASME Transactions on Mechatronics, 2011, 16, 201-212.	3.7	43
231	Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering C, 2011, 31, 1230-1239.	3.8	139
232	Design and development of a soft magnetically-propelled swimming microrobot. , 2011, , .		18
233	Non-invasive study of Octopus vulgaris arm morphology using ultrasound. Journal of Experimental Biology, 2011, 214, 4065-4065.	0.8	1
234	Design, fabrication and first sea trials of a small-sized autonomous catamaran for heavy metals monitoring in coastal waters. , 2011, , .		21

#	Article	IF	CITATIONS
235	Controlled Magnetic Propulsion of Floating Polymeric Two-Dimensional Nano-Objects. Advanced Robotics, 2011, 25, 1029-1047.	1.1	6
236	Flexible tag datalogger for food logistics. Sensors and Actuators A: Physical, 2010, 162, 316-323.	2.0	25
237	Experimental results of a novel amphibian solution for aquatic robot. , 2010, , .		0
238	Study and fabrication of bioinspired Octopus arm mockups tested on a multipurpose platform. , 2010, , .		29
239	The plant as a biomechatronic system. Plant Signaling and Behavior, 2010, 5, 90-93.	1.2	29
240	How safe are service robots in urban environments? Bullying a robot. , 2010, , .		86
241	Development of a novel quadruped mobile robot for behavior analysis of rats. , 2010, , .		3
242	A Universal Intelligent System-on-Chip Based Sensor Interface. Sensors, 2010, 10, 7716-7747.	2.1	21
243	Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design. , 2010, , .		3
244	An Investigation on Legal Regulations for Robot Deployment in Urban Areas: A Focus on Italian Law. Advanced Robotics, 2010, 24, 1901-1917.	1.1	16
245	Development of the hybrid wheel-legged mobile robot WR-3 designed to interact with rats. , 2010, , .		8
246	Tools and methods for experimental in-vivo measurement and biomechanical characterization of an octopus vulgaris arm. , 2009, 2009, 7196-9.		12
247	Design and development of biomimetic quadruped robot for behavior studies of rats and mice. , 2009, 2009, 7192-5.		13
248	A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical, 2009, 142, 288-297.	4.0	67
249	Flexible Tag Datalogger for Food Logistics. Procedia Chemistry, 2009, 1, 1215-1218.	0.7	13
250	SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robotics and Autonomous Systems, 2009, 57, 393-402.	3.0	97
251	Design of a biomimetic robotic octopus arm. Bioinspiration and Biomimetics, 2009, 4, 015006.	1.5	212
252	Human exposure to mercury in the vicinity of chlor-alkali plant. Environmental Research, 2009, 109, 355-367.	3.7	66

#	Article	IF	CITATIONS
253	Regulatory factors of basal F ₂ -isoprostane formation: Population, age, gender and smoking habits in humans. Free Radical Research, 2009, 43, 85-91.	1.5	45
254	Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm. Springer Tracts in Advanced Robotics, 2009, , 25-33.	0.3	15
255	Investigation of fabrication and encapsulation processes for a flexible tag microlab. Microsystem Technologies, 2008, 14, 527-534.	1.2	9
256	Urinary mercury and biomarkers of early renal dysfunction in environmentally and occupationally exposed adults: A three-country study. Environmental Research, 2008, 108, 224-232.	3.7	37
257	Bioinspired Robotic Dual-Camera System for High-Resolution Vision. , 2008, 24, 55-64.		8
258	A preliminary study of a robotic probe for soil exploration inspired by plant root apexes. , 2008, , .		3
259	A Solar-Powered Amphibian Robot for Aquatic Monitoring Network. Lecture Notes in Computer Science, 2008, , 1145-1154.	1.0	1
260	Localizing multiple gas/odor sources in an indoor environment using bayesian occupancy grid mapping. , 2007, , .		7
261	Application of Micro and Nanotechnologies to Food Safety and Quality Monitoring. Measurement and Control, 2007, 40, 116-119.	0.9	6
262	Fabrication process for a flexible tag microlab. , 2007, 6589, 210.		7
263	Biorobotic Investigation on the Muscle Structure of an Octopus Tentacle. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1471-4.	0.5	9
264	Explorative Particle Swarm Optimization Method for Gas/Odor Source Localization in an Indoor Environment with no Strong Airflow. , 2007, , .		10
265	Biomechatronic Design and Development of a Legged Rat Robot. , 2007, , .		10
266	Investigation on a sensitive Au thin film deposited on different substrates: Physical analysis via FIB and chemical analysis via evaluation of Au sensitivity to HgO. Sensors and Actuators B: Chemical, 2007, 122, 475-483.	4.0	1
267	Design of a new real-time dosimeter to monitor personal exposure to elemental gaseous mercury. Sensors and Actuators B: Chemical, 2007, 123, 158-167.	4.0	21
268	Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic. Sensors and Actuators B: Chemical, 2007, 127, 2-7.	4.0	147
269	Model validation of a mercury sensor, based on the resistivity variation of a thin gold film. Sensors and Actuators B: Chemical, 2006, 114, 513-521.	4.0	11
270	Urinary mercury in people living near point sources of mercury emissions. Science of the Total Environment, 2006, 368, 326-334.	3.9	28

#	Article	IF	CITATIONS
271	<title>Development of a flexible tag microlab</title> . , 2005, , .		4
272	A microfabricated physical sensor for atmospheric mercury monitoring. Sensors and Actuators A: Physical, 2004, 113, 282-287.	2.0	16
273	A MICROFABRICATED ATMOSPHERIC MERCURY SENSOR. , 2004, , .		1
274	Biologically-Inspired Microfabricated Force and Position Mechano-Sensors. , 2003, , 109-125.		14
275	Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Science of the Total Environment, 2000, 259, 115-121.	3.9	139
276	Temporal trends in gaseous mercury evasion from the Mediterranean seawaters. Science of the Total Environment, 2000, 259, 183-190.	3.9	85
277	Atmospheric mercury sources in the Mt. Amiata area, Italy. Science of the Total Environment, 1998, 213, 13-23.	3.9	79
278	Two ways of using a chamber for mercury flux measurement—A simple mathematical approach. Science of the Total Environment, 1998, 213, 33-41.	3.9	7
279	A dynamic flux chamber to measure mercury emission from aquatic systems. Science of the Total Environment, 1998, 215, 51-57.	3.9	42
280	A Biologically-Inspired Algorithm Implemented on a new Highly Flexible Multi-Agent Platform for Gas Source Localization. , 0, , .		12
281	Design and Development of a Legged Rat Robot for Studying Animal-Robot Interaction. , 0, , .		18
282	Fabrication and Encapsulation Processes for Flexible Smart RFID Tags. , 0, , .		3