List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7526294/publications.pdf Version: 2024-02-01

STEEAN LIEBALL

#	Article	IF	CITATIONS
1	Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. Journal of Cell Science, 2004, 117, 4411-4422.	1.2	411
2	SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nature Metabolism, 2021, 3, 149-165.	5.1	378
3	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	2.6	333
4	Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 2019, 8, .	2.8	256
5	Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications, 2018, 9, 335.	5.8	217
6	A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells International, 2014, 2014, 1-12.	1.2	181
7	Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut, 2017, 66, 473-486.	6.1	174
8	Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. Journal of Neuroscience Research, 2006, 83, 1502-1514.	1.3	117
9	Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO Journal, 2007, 26, 1397-1409.	3.5	109
10	4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 1563-1575.	1.4	109
11	Modulation of Calcium-Activated Potassium Channels Induces Cardiogenesis of Pluripotent Stem Cells and Enrichment of Pacemaker-Like Cells. Circulation, 2010, 122, 1823-1836.	1.6	102
12	Small-Molecule XIAP Inhibitors Enhance γ-Irradiation-Induced Apoptosis in Glioblastoma. Neoplasia, 2009, 11, 743-W9.	2.3	98
13	Autofluorescence imaging, an excellent tool for comparative morphology. Journal of Microscopy, 2011, 244, 259-272.	0.8	95
14	ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage. Cancer Research, 2017, 77, 5576-5590.	0.4	94
15	Loss of ATM accelerates pancreatic cancer formation and epithelial–mesenchymal transition. Nature Communications, 2015, 6, 7677.	5.8	90
16	Multipotent Neural Stem Cells from the Adult Tegmentum with Dopaminergic Potential Develop Essential Properties of Functional Neurons. Stem Cells, 2006, 24, 949-964.	1.4	79
17	The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Research, 2016, 16, 349-357.	0.3	76
18	TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265.	2.3	72

STEFAN LIEBAU

#	Article	IF	CITATIONS
19	Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Frontiers in Cellular Neuroscience, 2015, 9, 496.	1.8	72
20	FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons. Frontiers in Cellular Neuroscience, 2016, 10, 290.	1.8	67
21	Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells. Journal of Neurochemistry, 2006, 98, 629-640.	2.1	63
22	Evidence of SARS-CoV2 Entry Protein ACE2 in the Human Nose and Olfactory Bulb. Cells Tissues Organs, 2020, 209, 155-164.	1.3	61
23	Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging. Neurobiology of Disease, 2015, 82, 420-429.	2.1	59
24	Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 965-976.	1.1	58
25	A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports, 2015, 5, 1155-1170.	2.3	57
26	Stem cell-based retina models. Advanced Drug Delivery Reviews, 2019, 140, 33-50.	6.6	57
27	Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Scientific Reports, 2017, 7, 45190.	1.6	56
28	Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. Journal of Neurochemistry, 2006, 99, 426-437.	2.1	55
29	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	5.2	53
30	Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut, 2021, 70, 743-760.	6.1	49
31	An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis. PLoS ONE, 2011, 6, e18148.	1.1	48
32	Increased Reprogramming Capacity of Mouse Liver Progenitor Cells, Compared With Differentiated Liver Cells, Requires the BAF Complex. Gastroenterology, 2012, 142, 907-917.	0.6	47
33	The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cellular Signalling, 2007, 19, 367-377.	1.7	45
34	Organoids and organ chips in ophthalmology. Ocular Surface, 2021, 19, 1-15.	2.2	45
35	Exploration of strategies to reduce aerosol-spread during chest compressions: A simulation and cadaver model. Resuscitation, 2020, 152, 192-198.	1.3	44
36	Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. Journal of Neurochemistry, 2007, 101, 1338-1350.	2.1	43

#	Article	IF	CITATIONS
37	Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant α-synucleins related to Parkinson's disease. Neurochemistry International, 2006, 48, 329-340.	1.9	42
38	Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plasticity, 2016, 2016, 1-15.	1.0	40
39	Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opinion on Drug Discovery, 2019, 14, 47-57.	2.5	40
40	A Cleared View on Retinal Organoids. Cells, 2019, 8, 391.	1.8	39
41	Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Science Translational Medicine, 2020, 12, .	5.8	38
42	Developmental and Functional Nature of Human iPSC Derived Motoneurons. Stem Cell Reviews and Reports, 2013, 9, 475-492.	5.6	36
43	The dynactin p150 subunit: cell biology studies of sequence changes found in ALS/MND and Parkinsonian Syndromes. Journal of Neural Transmission, 2013, 120, 785-798.	1.4	35
44	Maturation of Synaptic Contacts in Differentiating Neural Stem Cells. Stem Cells, 2007, 25, 1720-1729.	1.4	31
45	Heterogeneous Nuclear Ribonucleoprotein K Interacts with Abi-1 at Postsynaptic Sites and Modulates Dendritic Spine Morphology. PLoS ONE, 2011, 6, e27045.	1.1	31
46	Methylphenidate exerts no neurotoxic, but neuroprotective effects in vitro. Journal of Neural Transmission, 2006, 113, 1927-1934.	1.4	30
47	Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Research, 2016, 17, 367-378.	0.3	27
48	Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports, 2021, 16, 2242-2256.	2.3	27
49	Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB Journal, 2012, 26, 4990-5001.	0.2	26
50	Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB. Molecular Cell, 2020, 77, 875-886.e7.	4.5	26
51	Ca2+ Activated K Channels-New Tools to Induce Cardiac Commitment from Pluripotent Stem Cells in Mice and Men. Stem Cell Reviews and Reports, 2012, 8, 720-740.	5.6	24
52	Mutations and variants of ONECUT1 in diabetes. Nature Medicine, 2021, 27, 1928-1940.	15.2	24
53	Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Experimental Cell Research, 2010, 316, 2760-2778.	1.2	23
54	The Impact of Bioactive Lipids on Cardiovascular Development. Stem Cells International, 2011, 2011, 1-13.	1.2	23

#	Article	IF	CITATIONS
55	An Inducible Expression System of the Calcium-Activated Potassium Channel 4 to Study the Differential Impact on Embryonic Stem Cells. Stem Cells International, 2011, 2011, 1-12.	1.2	22
56	A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells and Development, 2013, 22, 695-706.	1.1	22
57	Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny. Stem Cells International, 2013, 2013, 1-25.	1.2	21
58	Atomoxetine affects transcription/translation of the NMDA receptor and the norepinephrine transporter in the rat brain – an in vivo study. Drug Design, Development and Therapy, 2013, 7, 1433.	2.0	21
59	ProSAPiP2, a novel postsynaptic density protein that interacts with ProSAP2/Shank3. Biochemical and Biophysical Research Communications, 2009, 385, 460-465.	1.0	19
60	Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation. Stem Cells International, 2013, 2013, 1-13.	1.2	19
61	Stem cellâ€derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterology Journal, 2017, 5, 609-624.	1.6	17
62	Protein Kinase D2 Is an Essential Regulator of Murine Myoblast Differentiation. PLoS ONE, 2011, 6, e14599.	1.1	17
63	Initiation of Dopaminergic Differentiation of Nurr1â^'Mesencephalic Precursor Cells Depends on Activation of Multiple Mitogen-Activated Protein Kinase Pathways. Stem Cells, 2009, 27, 2009-2021.	1.4	15
64	Calcium-Activated Potassium Channels, Cardiogenesis of Pluripotent Stem Cells, and Enrichment of Pacemaker-Like Cells. Trends in Cardiovascular Medicine, 2011, 21, 74-83.	2.3	15
65	Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip. ACS Biomaterials Science and Engineering, 2021, 7, 3006-3017.	2.6	15
66	Dose-dependent modulation of apoptotic processes by fluoxetine in maturing neuronal cells: an <i>in vitro</i> study. World Journal of Biological Psychiatry, 2011, 12, 89-98.	1.3	14
67	Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. Communications Biology, 2022, 5, 52.	2.0	14
68	The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice. Acta Neuropathologica Communications, 2013, 1, 77.	2.4	12
69	Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in Vivo Genome Editing. International Journal of Molecular Sciences, 2020, 21, 1380.	1.8	11
70	Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy, 2010, 12, 491-504.	0.3	9
71	Stem Cells and Ion Channels. Stem Cells International, 2013, 2013, 1-3.	1.2	9
72	A Fresh Look on T-Box Factor Action in Early Embryogenesis (T-Box Factors in Early Development). Stem Cells and Development, 2015, 24, 1833-1851.	1.1	9

#	Article	IF	CITATIONS
73	Establishment of a human induced pluripotent stem cell (iPSC) line (HIHDNEi002-A) from a patient with developmental and epileptic encephalopathy carrying a KCNA2 (p.Arg297Gln) mutation. Stem Cell Research, 2019, 37, 101445.	0.3	9
74	TBX3 Knockdown Decreases Reprogramming Efficiency of Human Cells. Stem Cells International, 2016, 2016, 1-7.	1.2	8
75	Tubulin-binding cofactor B is a direct interaction partner of the dynactin subunit p150Glued. Cell and Tissue Research, 2012, 350, 13-26.	1.5	7
76	Calcium activated potassium channel expression during human iPS cell-derived neurogenesis. Annals of Anatomy, 2013, 195, 303-311.	1.0	7
77	A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Scientific Reports, 2015, 5, 11742.	1.6	7
78	Reprogramming to pluripotency does not require transition through a primitive streak-like state. Scientific Reports, 2017, 7, 16543.	1.6	7
79	Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Advanced Science, 2021, 8, 2100626.	5.6	7
80	The Potential of iPS Cells in Synucleinopathy Research. Stem Cells International, 2012, 2012, 1-6.	1.2	6
81	From Hair to iPSCs—A Guide on How to Reprogram Keratinocytes and Why. Current Protocols in Stem Cell Biology, 2020, 55, e121.	3.0	6
82	Generation of Functional Vascular Endothelial Cells and Pericytes from Keratinocyte Derived Human Induced Pluripotent Stem Cells. Cells, 2021, 10, 74.	1.8	6
83	Generation of an induced pluripotent stem cell (iPSC) line from a patient with developmental and epileptic encephalopathy carrying a KCNA2 (p.Leu328Val) mutation. Stem Cell Research, 2018, 33, 6-9.	0.3	5
84	Stem Cell Derived Organoids in Human Disease and Development. Stem Cells International, 2019, 2019, 1-2.	1.2	3
85	Generating iPSCs with a High-Efficient, Non-Invasive Method—An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming. Cells, 2022, 11, 1955. 	1.8	3
86	Factors Regulating Stem Cell Biology in Development and Disease. Stem Cells International, 2016, 2016, 1-3.	1.2	0