Jonas Sousasantos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conjugated asymmetry of the onset and magnitude of GPS scintillation driven by the vertical plasma drift. GPS Solutions, 2022, 26, 1.	4.3	3
2	Evaluation of the dusk and early nighttime Total Electron Content modeling over the eastern Brazilian region during a solar maximum period. Advances in Space Research, 2021, 67, 1580-1598.	2.6	5
3	Examining the Tolerance of GNSS Receiver Phase Tracking Loop Under the Effects of Severe Ionospheric Scintillation Conditions Based on Its Bandwidth. Radio Science, 2021, 56, e2020RS007160.	1.6	13
4	A deep fading assessment of the modernized L2C and L5 signals for low-latitude regions. GPS Solutions, 2021, 25, 1.	4.3	12
5	Long-lasting stagnant equatorial plasma bubble event and the related scintillation over the Brazilian region. Advances in Space Research, 2021, 68, 4678-4690.	2.6	2
6	Regional Ionospheric Delay Mapping for Low‣atitude Environments. Radio Science, 2020, 55, e2020RS007158.	1.6	12
7	Further complexities on the pre-reversal vertical drift modeling over the Brazilian region: A comparison between long-term observations and model results. Journal of Space Weather and Space Climate, 2020, 10, 20.	3.3	6
8	Role of Bottom‧ide Density Gradient in the Development of Equatorial Plasma Bubble/Spread <i>F</i> Irregularities: Solar Minimum and Maximum Conditions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027773.	2.4	4
9	Analysis of Plasma Bubble Signatures in Total Electron Content Maps of the Low-Latitude Ionosphere: A Simplified Methodology. Surveys in Geophysics, 2020, 41, 897-931.	4.6	27
10	Quasiperiodic Rising Structures in the E ―F Valley Region Below the Equatorial Plasma Bubble: A Numerical Study. Journal of Geophysical Research: Space Physics, 2019, 124, 7247-7255.	2.4	2
11	lonospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth, Planets and Space, 2019, 71, .	2.5	34
12	GPS Amplitude Fading Due to Ionospheric Scintillation Near the Equatorial Ionospheric Anomaly. , 2019, , .		1
13	Performance analysis of <i>îº</i> - <i>î¼</i> distribution for Global Positioning System (GPS) L1 frequency-related ionospheric fading channels. Journal of Space Weather and Space Climate, 2019, 9, A15.	3.3	5
14	A Numerical Study on the 3â€Ð Approach of the Equatorial Plasma Bubble Seeded by the Prereversal Vertical Drift. Journal of Geophysical Research: Space Physics, 2019, 124, 4539-4555.	2.4	3
15	Ionospheric Scintillation Fading Coefficients for the GPS L1, L2, and L5 Frequencies. Radio Science, 2018, 53, 1165-1174.	1.6	32
16	Relationship between ionospheric plasma bubble occurrence and lightning strikes over the Amazon region. Annales Geophysicae, 2018, 36, 349-360.	1.6	1
17	Climatology of the scintillation onset over southern Brazil. Annales Geophysicae, 2018, 36, 565-576.	1.6	30
18	GPS availability and positioning issues when the signal paths are aligned with ionospheric plasma bubbles. GPS Solutions, 2018, 22, 1.	4.3	49

#	Article	IF	CITATIONS
19	An alternative possibility to equatorial plasma bubble forecasting through mathematical modeling and Digisonde data. Journal of Geophysical Research: Space Physics, 2017, 122, 2079-2088.	2.4	8
20	A numerical simulation study of the collisionalâ€interchange instability seeded by the preâ€reversal vertical drift. Journal of Geophysical Research: Space Physics, 2013, 118, 7438-7449.	2.4	11
21	Ground-Based Augmentation Systems Operation in Low Latitudes - Part 1: Challenges, Mitigations, and Future Prospects. Journal of Aerospace Technology and Management, 0, 13, .	0.3	9
22	Ground-Based Augmentation System Operation in Low Latitudes - Part 2: Space Weather, Ionospheric Behavior and Challenges. Journal of Aerospace Technology and Management, 0, 13, .	0.3	10