
Rahul Verma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7525361/publications.pdf Version: 2024-02-01

Рании Игрма

#	Article	IF	CITATIONS
1	Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease. Journal of Drug Targeting, 2022, 30, 777-791.	4.4	13
2	Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics. Current Protein and Peptide Science, 2022, 23, 643-656.	1.4	3
3	Correction to "Heparin Encapsulated Metered-Dose Topical â€`Nano-Spray Gel' Liposomal Formulation Ensures Rapid On-Site Management of Frostbite Injury by Inflammatory Cytokines Scavenging― ACS Biomaterials Science and Engineering, 2022, 8, 2724-2725.	5.2	0
4	Enema based therapy using liposomal formulation of low molecular weight heparin for treatment of active ulcerative colitis: New adjunct therapeutic opportunity. Materials Science and Engineering C, 2021, 121, 111851.	7.3	13
5	Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Materials Science and Engineering C, 2021, 123, 112027.	7.3	53
6	Systematic development and optimization of spray-dried Quercetin-HP-β-cyclodextrin microparticles for DPI-based therapy of lung cancer. Journal of Materials Science, 2021, 56, 14700-14716.	3.7	7
7	Aminocellulose-Grafted Polymeric Nanoparticles for Selective Targeting of CHEK2-Deficient Colorectal Cancer. ACS Applied Bio Materials, 2021, 4, 5324-5335.	4.6	15
8	Formulation and optimization of silymarin-encapsulated binary micelles for enhanced amyloid disaggregation activity. Drug Development and Industrial Pharmacy, 2021, 47, 1775-1785.	2.0	4
9	Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech, 2020, 21, 260.	3.3	31
10	Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis. Journal of Controlled Release, 2020, 324, 17-33.	9.9	44
11	<i>In Vitro</i> Anti-tumoral and Anti-bacterial Activity of an Octamolybdate Cluster-Based Hybrid Solid Incorporated with a Copper Picolinate Complex. ACS Applied Bio Materials, 2020, 3, 4025-4035.	4.6	8
12	Targeted Pulmonary Delivery of the Green Tea Polyphenol Epigallocatechin Gallate Controls the Growth of Mycobacterium tuberculosis by Enhancing the Autophagy and Suppressing Bacterial Burden. ACS Biomaterials Science and Engineering, 2020, 6, 4126-4140.	5.2	20
13	Matrix Metalloproteinase-Responsive Mesoporous Silica Nanoparticles Cloaked with Cleavable Protein for "Self-Actuating―On-Demand Controlled Drug Delivery for Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 4987-4999.	4.6	37
14	Inhalation Delivery of Host Defense Peptides (HDP) using Nano- Formulation Strategies: A Pragmatic Approach for Therapy of Pulmonary Ailments. Current Protein and Peptide Science, 2020, 21, 369-378.	1.4	6
15	Alginate Microspheres Elicit Innate M1-Inflammatory Response in Macrophages Leading to Bacillary Killing. AAPS PharmSciTech, 2019, 20, 241.	3.3	10
16	Heparin-Encapsulated Metered-Dose Topical "Nano-Spray Gel―Liposomal Formulation Ensures Rapid On-Site Management of Frostbite Injury by Inflammatory Cytokines Scavenging. ACS Biomaterials Science and Engineering, 2019, 5, 6617-6631.	5.2	22
17	Mycobactericidal activity of some micro-encapsulated synthetic Host Defense Peptides (HDP) by expediting the permeation of antibiotic: A new paradigm of drug delivery for tuberculosis. International Journal of Pharmaceutics, 2019, 558, 231-241.	5.2	15
18	Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions. Journal of Drug Targeting, 2018, 26, 208-221.	4.4	23

RAHUL VERMA

#	Article	IF	CITATIONS
19	Hollow ZnO from assembly of nanoparticles: photocatalytic and antibacterial activity. Journal of Materials Science, 2018, 53, 14964-14974.	3.7	17
20	Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 156-165.	2.8	13
21	Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. International Journal of Pharmaceutics, 2018, 536, 50-62.	5.2	28
22	Inhalable microspheres with hierarchical pore size for tuning the release of biotherapeutics in lungs. Microporous and Mesoporous Materials, 2016, 235, 195-203.	4.4	19
23	Regulation of cell death by intracellular delivery of nitric oxide to macrophages infected with virulent or avirulent Mycobacterium tuberculosis. Tuberculosis, 2015, 95, 627-628.	1.9	5
24	Coating doxorubicinâ€loaded nanocapsules with alginate enhances therapeutic efficacy against <scp><i>L</i></scp> <i>eishmania</i> in hamsters by inducing <scp>T</scp> h1â€type immune responses. British Journal of Pharmacology, 2014, 171, 4038-4050.	5.4	21
25	Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis. Tuberculosis, 2013, 93, 412-417.	1.9	28
26	Inhaled Microparticles Containing Clofazimine Are Efficacious in Treatment of Experimental Tuberculosis in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 1050-1052.	3.2	54
27	Exploiting 4-sulphate <i>N</i> -acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes <i>in vitro</i> and <i>in vivo</i> . Journal of Drug Targeting, 2012, 20, 883-896.	4.4	23
28	Inhalable Microparticles Containing Nitric Oxide Donors: Saying NO to Intracellular <i>Mycobacterium tuberculosis</i> . Molecular Pharmaceutics, 2012, 9, 3183-3189.	4.6	32
29	Partial Biodistribution and Pharmacokinetics of Isoniazid and Rifabutin Following Pulmonary Delivery of Inhalable Microparticles to Rhesus Macaques. Molecular Pharmaceutics, 2012, 9, 1011-1016.	4.6	28
30	Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 468-477.	3.3	45
31	Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems. Therapeutic Delivery, 2011, 2, 753-768.	2.2	16
32	Loading and Release of Amphotericin-B from Biodegradable Poly(lactic-co-glycolic acid) Nanoparticles. Journal of Biomedical Nanotechnology, 2011, 7, 118-120.	1.1	19
33	The devil's advocacy: When and why inhaled therapies for tuberculosis may not work. Tuberculosis, 2011, 91, 65-66.	1.9	18
34	Nanoparticles Containing Nitric Oxide Donor with Antileishmanial Agent for Synergistic Effect Against Visceral Leishmaniasis. Journal of Biomedical Nanotechnology, 2011, 7, 213-215.	1.1	6
35	Microparticles induce variable levels of activation in macrophages infected with Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 188-196.	1.9	26
36	RGD modified albumin nanospheres for tumour vasculature targeting. Journal of Pharmacy and Pharmacology, 2010, 63, 33-40.	2.4	26

#	Article	IF	CITATIONS
37	A hand-held apparatus for "nose-only―exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. European Journal of Pharmaceutical Sciences, 2008, 34, 56-65.	4.0	60
38	Intracellular Time Course, Pharmacokinetics, and Biodistribution of Isoniazid and Rifabutin following Pulmonary Delivery of Inhalable Microparticles to Mice. Antimicrobial Agents and Chemotherapy, 2008, 52, 3195-3201.	3.2	86