Michele Suman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7525288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC-IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose. Food Control, 2022, 133, 108645.	5.5	22
2	Oregano authentication by mid-level data fusion of chemical fingerprint signatures acquired by ambient mass spectrometry. Food Control, 2021, 126, 108058.	5.5	27
3	Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. TrAC - Trends in Analytical Chemistry, 2021, 142, 116305.	11.4	15
4	Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness. Journal of Dairy Science, 2021, 104, 12286-12294.	3.4	5
5	Last decade studies on mycotoxins' fate during food processing: an overview. Current Opinion in Food Science, 2021, 41, 70-80.	8.0	21
6	Novel analytical methods to study the fate of mycotoxins during thermal food processing. Analytical and Bioanalytical Chemistry, 2020, 412, 9-16.	3.7	41
7	Evaluation of chemical indices for the identification of incubator-reject eggs in egg products. Food Control, 2020, 107, 106767.	5.5	1
8	Assessment of Enzymatic Improvers in Flours Using LC–MS/MS Detection of Marker Tryptic Peptides. Journal of the American Society for Mass Spectrometry, 2020, 31, 240-248.	2.8	11
9	A Non-Targeted High-Resolution Mass Spectrometry Study for Extra Virgin Olive Oil Adulteration with Soft Refined Oils: Preliminary Findings from Two Different Laboratories. ACS Omega, 2020, 5, 24169-24178.	3.5	14
10	GC-IMS and FGC-Enose fingerprint as screening tools for revealing extra virgin olive oil blending with soft-refined olive oils: A feasibility study. Microchemical Journal, 2020, 159, 105374.	4.5	28
11	Fate of Free and Modified Forms of Mycotoxins during Food Processing. Toxins, 2020, 12, 448.	3.4	2
12	The MyToolbox EU–China Partnership—Progress and Future Directions in Mycotoxin Research and Management. Toxins, 2020, 12, 712.	3.4	7
13	Practical approach to develop a multiâ€group screening method for detection of mycotoxins, pesticides and veterinary drugs in food. Journal of Mass Spectrometry, 2020, 55, e4618.	1.6	6
14	A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat. Food Chemistry, 2020, 317, 126366.	8.2	19
15	Analytical issue related to fumonisins: A matter of sample comminution?. Food Control, 2019, 95, 1-5.	5.5	15
16	Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chemistry, 2019, 271, 691-696.	8.2	126
17	Tracing the Geographical Origin of Durum Wheat by FT-NIR Spectroscopy. Foods, 2019, 8, 450.	4.3	27
18	Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins, 2019, 11, 499.	3.4	16

2

MICHELE SUMAN

#	Article	IF	CITATIONS
19	The Influence of Processing Parameters on the Mitigation of Deoxynivalenol during Industrial Baking. Toxins, 2019, 11, 317.	3.4	23
20	Development of a DNA Barcoding-Like Approach to Detect Mustard Allergens in Wheat Flours. Genes, 2019, 10, 234.	2.4	11
21	ESEM-EDS-based analytical approach to assess nanoparticles for food safety and environmental control. Talanta, 2019, 196, 429-435.	5.5	7
22	Species specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to Bolognese sauce. Food Control, 2019, 97, 15-24.	5.5	50
23	Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry, 2019, 279, 303-311.	8.2	23
24	Inâ€house validation and smallâ€scale collaborative study to evaluate analytical performances of multimycotoxin screening methods based on liquid chromatography–highâ€resolution mass spectrometry: Case study on <i>Fusarium</i> toxins in wheat. Journal of Mass Spectrometry, 2018, 53, 743-752.	1.6	15
25	Selfâ€Assembly of TbPc ₂ Singleâ€Molecule Magnets on Surface through Multiple Hydrogen Bonding. Small, 2018, 14, 1702572.	10.0	17
26	Direct analysis real-time–high-resolution mass spectrometry for <i>Triticum </i> species authentication. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 2291-2297.	2.3	17
27	Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging. Journal of Cereal Science, 2018, 84, 74-82.	3.7	38
28	Egg product freshness evaluation: A metabolomic approach. Journal of Mass Spectrometry, 2018, 53, 849-861.	1.6	23
29	The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends in Food Science and Technology, 2018, 80, 223-241.	15.1	109
30	Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chemistry, 2017, 229, 597-603.	8.2	30
31	Mass spectrometry quantification of beef and pork meat in highly processed food: Application on Bolognese sauce. Food Control, 2017, 74, 61-69.	5.5	39
32	Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Analytical and Bioanalytical Chemistry, 2017, 409, 63-80.	3.7	57
33	Determination of Ochratoxin A in Rye and Rye-Based Products by Fluorescence Polarization Immunoassay. Toxins, 2017, 9, 305.	3.4	7
34	Multiresidual LC–MS analysis of plasticizers used in PVC gaskets of lids and assessment of their migration into food sauces. Journal of Mass Spectrometry, 2016, 51, 805-813.	1.6	9
35	Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 2016, 32, 179-205.	2.3	462
36	Optimization and Validation of a Fluorescence Polarization Immunoassay for Rapid Detection of T-2 and HT-2 Toxins in Cereals and Cereal-Based Products. Food Analytical Methods, 2016, 9, 3310-3318.	2.6	16

MICHELE SUMAN

#	Article	IF	CITATIONS
37	Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. Toxins, 2015, 7, 2773-2790.	3.4	33
38	Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1617-1627.	2.3	29
39	Influence of the industrial process from caryopsis to cornmeal semolina on levels of fumonisins and their masked forms. Food Control, 2015, 48, 170-174.	5.5	19
40	Reliable liquid chromatographyâ€mass spectrometry method for investigation of primary aromatic amines migration from food packaging and during industrial curing of multilayer plastic laminates. Journal of Mass Spectrometry, 2014, 49, 870-877.	1.6	17
41	Determination of Deoxynivalenol in Wheat Bran and Whole-Wheat Flour by Fluorescence Polarization Immunoassay. Food Analytical Methods, 2014, 7, 806-813.	2.6	25
42	Fluorescence Polarization Immunoassay for Rapid, Accurate and Sensitive Determination of Ochratoxin A in Wheat. Food Analytical Methods, 2014, 7, 298-307.	2.6	30
43	Liquid chromatography–full scan-high resolution mass spectrometry-based method towards the comprehensive analysis of migration of primary aromatic amines from food packaging. Journal of Chromatography A, 2013, 1320, 96-102.	3.7	45
44	Development and validation of a liquid chromatography/linear ion trap mass spectrometry method for the quantitative determination of deoxynivalenol-3-glucoside in processed cereal-derived products. Food Chemistry, 2013, 136, 1568-1576.	8.2	41
45	Rapid and Simultaneous Analysis of Xanthines and Polyphenols as Bitter Taste Markers in Bakery Products by FT-NIR Spectroscopy. Food Analytical Methods, 2013, 6, 17-27.	2.6	24
46	Direct Synthesis of ESBO Derivatives- ¹⁸ O Labelled with Dioxirane. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	1
47	Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol. Food Control, 2012, 26, 88-91.	5.5	44
48	Targeted screening of pesticides, veterinary drugs and mycotoxins in bakery ingredients and food commodities by liquid chromatographyâ€highâ€resolution singleâ€stage Orbitrap mass spectrometry. Journal of Mass Spectrometry, 2012, 47, 1232-1241.	1.6	44
49	Development and ina€house validation of a robust and sensitive solida€phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B ₁ , B ₂ , G ₁ , G ₂ , ochratoxin A, deoxynivalenol, zearalenone, Tâ€2 and HTâ€2 toxins in cerealâ€based foods. Rapid Communications in Mass Spectrometry,	1.5	66
50	ZUTH, 25, 1869-1880. Trace detection of the chlorohydrins of epoxidized soybean oil in foodstuffs by UPLC-ESI-MS/MS. Journal of Mass Spectrometry, 2010, 45, 996-1002.	1.6	11
51	Acrylamide removal from heated foods. Food Chemistry, 2010, 119, 791-794.	8.2	59
52	Technological Strategies to Reduce Acrylamide Levels in Heated Foods. Food Engineering Reviews, 2009, 1, 169-179.	5.9	35
53	Liquid Chromatographyâ ``Electrospray Ionizationâ ``Tandem Mass Spectrometry Method for the Determination of Epoxidized Soybean Oil in Food Products. Journal of Agricultural and Food Chemistry, 2005, 53, 9879-9884.	5.2	24