Jianhua Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7524950/publications.pdf

Version: 2024-02-01

		201674	302126
38	2,936	27	39
papers	citations	h-index	g-index
40	40	40	3590
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface Modified Ti ₃ C ₂ MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Applied Materials & Diterfaces, 2017, 9, 40077-40086.	8.0	491
2	Black Phosphorus Nanosheets Immobilizing Ce6 for Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12431-12440.	8.0	201
3	Solvent-Assisted Self-Assembly of a Metal–Organic Framework Based Biocatalyst for Cascade Reaction Driven Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 6822-6832.	13.7	201
4	BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32475-32481.	8.0	177
5	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angewandte Chemie - International Edition, 2020, 59, 8833-8838.	13.8	139
6	In Situ Polymerized Hollow Mesoporous Organosilica Biocatalysis Nanoreactor for Enhancing ROSâ€Mediated Anticancer Therapy. Advanced Functional Materials, 2020, 30, 1907716.	14.9	136
7	Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chemical Science, 2018, 9, 2188-2194.	7.4	133
8	Penetration depth tunable BODIPY derivatives forÂpH triggered enhanced photothermal/photodynamic synergistic therapy. Chemical Science, 2019, 10, 268-276.	7.4	120
9	Precision Cancer Theranostic Platform by In Situ Polymerization in Perylene Diimide-Hybridized Hollow Mesoporous Organosilica Nanoparticles. Journal of the American Chemical Society, 2019, 141, 14687-14698.	13.7	105
10	A Rationally Designed Semiconducting Polymer Brush for NIRâ€II Imagingâ€Guided Lightâ€Triggered Remote Control of CRISPR/Cas9 Genome Editing. Advanced Materials, 2019, 31, e1901187.	21.0	103
11	A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. Chemical Science, 2018, 9, 8103-8109.	7.4	101
12	pHâ€Responsive PEG–Doxorubicinâ€Encapsulated Azaâ€BODIPY Nanotheranostic Agent for Imagingâ€Guided Synergistic Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1701272.	7.6	100
13	Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nature Biomedical Engineering, 2020, 4, 1102-1116.	22.5	93
14	A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermallyÂboosted radiotherapy. Nature Communications, 2021, 12, 523.	12.8	77
15	Singlet Oxygen "Afterglow―Therapy with NIRâ€II Fluorescent Molecules. Advanced Materials, 2021, 33, e2103627.	21.0	76
16	Cascade Reactions Catalyzed by Planar Metal–Organic Framework Hybrid Architecture for Combined Cancer Therapy. Small, 2020, 16, e2004016.	10.0	64
17	Biodegradable Metal–Organicâ€Frameworkâ€Gated Organosilica for Tumorâ€Microenvironmentâ€Unlocked Glutathioneâ€Depletionâ€Enhanced Synergistic Therapy. Advanced Materials, 2022, 34, e2107560.	21.0	61
18	Zinc(II) Metalated Porphyrins as Photothermogenic Photosensitizers for Cancer Photodynamic/Photothermal Synergistic Therapy. ACS Applied Materials & (2018, 10, 238-247.	8.0	60

#	Article	IF	CITATIONS
19	Triphenylamine flanked furan-diketopyrrolopyrrole for multi-imaging guided photothermal/photodynamic cancer therapy. Nanoscale, 2017, 9, 18890-18896.	5.6	45
20	Phototherapy meets immunotherapy: a win–win strategy to fight against cancer. Nanophotonics, 2021, 10, 3229-3245.	6.0	43
21	Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nature Communications, 2022, 13, 2513.	12.8	43
22	An anthracene functionalized BODIPY derivative with singlet oxygen storage ability for photothermal and continuous photodynamic synergistic therapy. Journal of Materials Chemistry B, 2019, 7, 3303-3309.	5.8	41
23	(2-(4-Bromophenyl)ethene-1,1,2-triyl)tribenzene with aggregation induced emission for ablation of HeLa cells. Materials Chemistry Frontiers, 2018, 2, 1842-1846.	5.9	38
24	Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Materials Chemistry Frontiers, 2019, 3, 1123-1127.	5.9	37
25	An NIR triphenylamine grafted BODIPY derivative with high photothermal conversion efficiency and singlet oxygen generation for imaging guided phototherapy. Materials Chemistry Frontiers, 2019, 3, 1523-1531.	5.9	35
26	Protonâ€Driven Transformable ¹ O ₂ â€Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. Advanced Science, 2022, 9, e2200128.	11.2	33
27	Tumor Microenvironment Responsive Oxygenâ€Selfâ€Generating Nanoplatform for Dualâ€Imaging Guided Photodynamic and Photothermal Therapy. ChemistrySelect, 2018, 3, 4366-4373.	1.5	31
28	Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. Journal of Inorganic Biochemistry, 2019, 193, 124-129.	3.5	24
29	A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Materials Chemistry Frontiers, 2019, 3, 2143-2150.	5.9	22
30	Photoacoustic Imagingâ€Guided Synergistic Photothermal/Radiotherapy Using Plasmonic Bi/Bi ₂ O _{3â^x} Nanoparticles. Advanced Functional Materials, 2022, 32, .	14.9	20
31	A generic self-assembly approach towards phototheranostics for NIR-II fluorescence imaging and phototherapy. Acta Biomaterialia, 2022, 140, 601-609.	8.3	17
32	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angewandte Chemie, 2020, 132, 8918-8923.	2.0	16
33	Two photoactive Ru (II) compounds based on tetrazole ligands for photodynamic therapy. Journal of Inorganic Biochemistry, 2020, 210, 111127.	3.5	15
34	Finite element modeling simulation-assisted design of integrated microfluidic chips for heavy metal ion stripping analysis. Journal Physics D: Applied Physics, 2017, 50, 415303.	2.8	12
35	Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced photodynamic therapy against lung cancer. Journal of Inorganic Biochemistry, 2020, 212, 111236.	3.5	10
36	Biphasic synthesis of biodegradable urchin-like mesoporous organosilica nanoparticles for enhanced cellular internalization and precision cascaded therapy. Biomaterials Science, 2021, 9, 2584-2597.	5.4	6

#	Article	lF	CITATIONS
37	Two New Coordination Compounds Based on Mn(II)/Co(II) with Hpztza and 4,4′-bipyridine. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 1103-1109.	3.7	2
38	Synthesis and Anticancer Mechanism of a Cu(II) Compound Based on 5-Aminotetrazole-1-acetic Acid Against Hepatocellular Carcinoma Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2819-2824.	3.7	1