List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7524663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5555-5562.	6.6	628
2	Ultrahighâ€Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 2015, 25, 7530-7538.	7.8	359
3	N-Doped Carbon-Wrapped Cobalt Nanoparticles on N-Doped Graphene Nanosheets for High-Efficiency Hydrogen Production. Chemistry of Materials, 2015, 27, 2026-2032.	3.2	305
4	CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 28, 143-150.	8.2	278
5	Porous metallic MoO ₂ -supported MoS ₂ nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale, 2015, 7, 5203-5208.	2.8	267
6	Hierarchical spheres constructed by defect-rich MoS 2 /carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy, 2016, 22, 490-498.	8.2	267
7	Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS Catalysis, 2018, 8, 6827-6836.	5.5	188
8	MoS ₂ nanosheet-coated CoS ₂ nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 22886-22891.	5.2	185
9	Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy, 2015, 16, 357-366.	8.2	162
10	Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science and Pollution Research, 2016, 23, 2778-2788.	2.7	160
11	Core–Shell Nanocomposites Based on Gold Nanoparticle@Zinc–Iron-Embedded Porous Carbons Derived from Metal–Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2016, 6, 1045-1053.	5.5	151
12	Biomolecular Recognition Principles for Bionanocombinatorics: An Integrated Approach To Elucidate Enthalpic and Entropic Factors. ACS Nano, 2013, 7, 9632-9646.	7.3	142
13	Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Applied Materials & Interfaces, 2016, 8, 5065-5069.	4.0	122
14	Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. Chemistry of Materials, 2014, 26, 4960-4969.	3.2	118
15	Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size. ACS Applied Materials & amp; Interfaces, 2016, 8, 20635-20641.	4.0	118
16	Total Water Splitting Catalyzed by Co@Ir Core–Shell Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Derived from Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 5105-5114.	3.2	113
17	Single-atom catalyst for high-performance methanol oxidation. Nature Communications, 2021, 12, 5235.	5.8	113
18	Mixed Dithiolate Durene-DT and Monothiolate Phenylethanethiolate Protected Au ₁₃₀ Nanoparticles with Discrete Core and Core-Ligand Energy States. Journal of the American Chemical Society, 2011, 133, 16037-16044.	6.6	110

#	Article	IF	CITATIONS
19	Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale, 2014, 6, 3165-3172.	2.8	104
20	Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small, 2017, 13, 1701025.	5.2	103
21	Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. Journal of Power Sources, 2017, 343, 458-466.	4.0	99
22	Synthesis and Structural Determination of Multidentate 2,3-Dithiol-Stabilized Au Clusters. Journal of the American Chemical Society, 2010, 132, 3367-3374.	6.6	96
23	Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: An efficient electrocatalyst for water splitting. Carbon, 2020, 160, 133-144.	5.4	90
24	Bioreduction of Precious Metals by Microorganism: Efficient Gold@Nâ€Đoped Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 8416-8420.	7.2	88
25	Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. Journal of the American Chemical Society, 2016, 138, 540-548.	6.6	84
26	Bimetallic (Iron or Cobalt) Complexes Bearing 2-Methyl-2,4-bis(6-iminopyridin-2-yl)-1H-1,5-benzodiazepines for Ethylene Reactivity. Organometallics, 2007, 26, 2456-2460.	1.1	81
27	Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Catalysis, 2018, 361, 168-176.	3.1	69
28	Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. Journal of Materials Chemistry A, 2021, 9, 21259-21269.	5.2	66
29	Homoleptic Alkynylâ€Protected Ag ₁₅ Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 26136-26141.	7.2	65
30	Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters. Catalysts, 2018, 8, 65.	1.6	64
31	Hollow Nanocages of NixCo1â^'xSe for Efficient Zinc–Air Batteries and Overall Water Splitting. Nano-Micro Letters, 2019, 11, 28.	14.4	63
32	Nickel nanoparticles partially embedded into carbon fiber cloth via metal-mediated pitting process as flexible and efficient electrodes for hydrogen evolution reactions. Carbon, 2017, 122, 710-717.	5.4	61
33	Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets. Nanoscale, 2016, 8, 6629-6635.	2.8	58
34	Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at All-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochimica Acta, 2019, 320, 134568.	2.6	56
35	Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and challenges. International Journal of Hydrogen Energy, 2021, 46, 25771-25781.	3.8	56
36	Graphene‣upported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. Small, 2016, 12, 1900-1908.	5.2	54

#	Article	IF	CITATIONS
37	Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 4932-4941.	3.8	54
38	High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2020, 45, 18840-18849.	3.8	52
39	PdAu alloyed clusters supported by carbon nanosheets asÂefficient electrocatalysts forÂoxygenÂreduction. International Journal of Hydrogen Energy, 2017, 42, 218-227.	3.8	49
40	Establishing structure/property relationships in atomically dispersed Co–Fe dual site M–N _x catalysts on microporous carbon for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13044-13055.	5.2	49
41	Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets. Catalysts, 2018, 8, 329.	1.6	48
42	Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Colloid and Interface Science, 2018, 528, 18-26.	5.0	48
43	Fluorescence Intensity and Lifetime Cell Imaging with Luminescent Gold Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 26561-26569.	1.5	47
44	Bioreduction of Precious Metals by Microorganism: Efficient Gold@Nâ€Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2016, 128, 8556-8560.	1.6	44
45	Atomically precise metal nanoclusters for (photo)electroreduction of CO2: Recent advances, challenges and opportunities. Journal of Energy Chemistry, 2021, 57, 359-370.	7.1	43
46	Near infrared luminescence of gold nanoclusters affected by the bonding of 1,4-dithiolate durene and monothiolate phenylethanethiolate. Nanoscale, 2012, 4, 4119.	2.8	41
47	Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors. Scientific Reports, 2018, 8, 2915.	1.6	41
48	Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta, 2018, 260, 168-176.	2.6	41
49	Interfacial electron transfer of heterostructured MIL-88A/Ni(OH) ₂ enhances the oxygen evolution reaction in alkaline solutions. Journal of Materials Chemistry A, 2020, 8, 3311-3321.	5.2	41
50	Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries. Electrochimica Acta, 2021, 368, 137584.	2.6	40
51	Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. Journal of Power Sources, 2021, 514, 230600.	4.0	40
52	N, S-codoped CNTs supported Co4S3 nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: An efficient catalyst for reversible oxygen electrocatalysis. Journal of Colloid and Interface Science, 2020, 560, 186-197.	5.0	38
53	Probing the Co role in promoting the OER and Zn–air battery performance of NiFe-LDH: a combined experimental and theoretical study. Journal of Materials Chemistry A, 2022, 10, 5244-5254.	5.2	38
54	Metal–Carbon Hybrid Electrocatalysts Derived from Ionâ€Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small, 2016, 12, 2768-2774.	5.2	37

#	Article	IF	CITATIONS
55	Hierarchically Structured Co(OH) ₂ /CoPt/N-CN Air Cathodes for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4983-4994.	4.0	35
56	Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1019.	2.0	35
57	Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions. Nanoscale, 2014, 6, 7416.	2.8	31
58	Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure. Journal of Catalysis, 2020, 382, 181-191.	3.1	30
59	Ultrasmall Palladium Nanoclusters Encapsulated in Porous Carbon Nanosheets for Oxygen Electroreduction in Alkaline Media. ChemElectroChem, 2017, 4, 1349-1355.	1.7	29
60	RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values. International Journal of Hydrogen Energy, 2019, 44, 24680-24689.	3.8	28
61	A homoleptic alkynyl-protected [Ag ₉ Cu ₆ (^{<i>t</i>} BuCî€,C) ₁₂] ⁺ superatom with free electrons: synthesis, structure analysis, and different properties compared with the Au ₇ Ag ₈ cluster in the M ₁₅ ⁺ series. Chemical Science,	3.7	27
62	Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces. Nanoscale, 2015, 7, 13638-13645.	2.8	26
63	Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 1050-1060.	4.0	26
64	Facile fabrication of PtPd alloyed worm-like nanoparticles for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 17112-17121.	3.8	25
65	Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability. Electrochimica Acta, 2018, 284, 119-127.	2.6	25
66	NiFe Alloyed Nanoparticles Encapsulated in Nitrogen Doped Carbon Nanotubes for Bifunctional Electrocatalysis Toward Rechargeable Znâ€Air Batteries. ChemCatChem, 2019, 11, 5994-6001.	1.8	24
67	Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbonâ€Included TiO ₂ Core–Shell Sulfur Hosts for Advanced Lithium–Sulfur Batteries. Small, 2020, 16, e2005998.	5.2	24
68	Monolayer Reactions of Protected Au Nanoclusters with Monothiol Tiopronin and 2,3-Dithiol Dimercaptopropanesulfonate. Langmuir, 2011, 27, 2989-2996.	1.6	23
69	Ternary PtVCo dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2425-2431.	3.0	23
70	Physico-chemical pretreatment technologies of bioconversion efficiency of Paulownia tomentosa (Thunb.) Steud Industrial Crops and Products, 2016, 87, 280-286.	2.5	22
71	Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon. Journal of Alloys and Compounds, 2019, 784, 447-455.	2.8	22
72	Heterostructure and Oxygen Vacancies Promote NiFe ₂ O ₄ /Ni ₃ S ₄ toward Oxygen Evolution Reaction and Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 3568-3574.	1.7	22

#	Article	IF	CITATIONS
73	Palladium nanoparticles supported by metal-organic frameworks derived FeNi3Cx nanorods as efficient oxygen reversible catalysts for rechargeable Zn-Air batteries. Electrochimica Acta, 2019, 307, 403-413.	2.6	21
74	Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A miniâ€review. Polymers for Advanced Technologies, 2020, 31, 368-388.	1.6	21
75	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experimental and theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	5.2	21
76	Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. Nanoscale, 2021, 13, 602-614.	2.8	20
77	Morphology Control and Electro catalytic Activity towards Oxygen Reduction of Peptideâ€Templated Metal Nanomaterials: A Comparison between Au and Pt. ChemistrySelect, 2016, 1, 6044-6052.	0.7	19
78	Assessing the Biocidal Activity and Investigating the Mechanism of Oligo- <i>p</i> -phenylene-ethynylenes. ACS Applied Materials & Interfaces, 2017, 9, 7964-7971.	4.0	19
79	Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases. Science of the Total Environment, 2017, 599-600, 952-959.	3.9	19
80	Peptideâ€FlgA3â€Based Gold Palladium Bimetallic Nanoparticles That Catalyze the Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2017, 9, 2980-2987.	1.8	19
81	Oxygen reduction reaction and hydrogen evolution reaction catalyzed by carbon-supported molybdenum-coated palladium nanocubes. International Journal of Hydrogen Energy, 2018, 43, 17132-17141.	3.8	19
82	A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Science China Chemistry, 2020, 63, 1777-1784.	4.2	19
83	Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects. Journal of Alloys and Compounds, 2017, 702, 146-152.	2.8	18
84	Physiological and biochemical responses of Microcystis aeruginosa to phosphine. Environmental Pollution, 2019, 247, 165-171.	3.7	18
85	Atomically dispersed materials for rechargeable batteries. Nano Energy, 2020, 76, 105085.	8.2	18
86	Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces. Nanoscale, 2016, 8, 4194-4202.	2.8	16
87	Peptide A4 based AuAg alloyed nanoparticle networks for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 11295-11303.	3.8	16
88	In situ assembly of ultrafine AuPd nanowires as efficient electrocatalysts for ethanol electroxidation. International Journal of Hydrogen Energy, 2021, 46, 8549-8556.	3.8	16
89	Ordered mesoporous carbons-supported gold nanoparticles as highly efficient electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 103421-103427.	1.7	15
90	Study of target spacing of thermo-sensitive carrier on the activity recovery of immobilized penicillin G acylase. Colloids and Surfaces B: Biointerfaces, 2019, 179, 153-160.	2.5	15

#	Article	IF	CITATIONS
91	Oxygen electroreduction promoted by quasi oxygen vacancies in metal oxide nanoparticles prepared by photoinduced chlorine doping. Chemical Communications, 2015, 51, 10620-10623.	2.2	14
92	Trifunctional Electrocatalysts: Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte (Small 33/2017). Small, 2017, 13, .	5.2	14
93	Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au ₁₄₄ molecules. Nanoscale, 2020, 12, 2980-2986.	2.8	14
94	Styrene oxidation catalyzed by Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl nanoclusters: Impacts of capping ligands, particle size and charge state. Applied Catalysis A: General, 2018, 557, 1-6.	2.2	13
95	The engineering and immobilization of penicillin G acylase onto thermoâ€sensitive triâ€block copolymer system. Polymers for Advanced Technologies, 2019, 30, 86-93.	1.6	13
96	Atomically dispersed Co atoms in nitrogen-doped carbon aerogel for efficient and durable oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 36836-36847.	3.8	13
97	Tailoring the interfacial active center of MnSxO2â^'x/MnCo2S4 heterostructure to boost the performance for oxygen evolution reaction and Zn-Air batteries in neutral electrolyte. Chemical Engineering Journal, 2022, 427, 131966.	6.6	13
98	The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 210, 37-42.	1.7	12
99	Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen. Nanoscale Research Letters, 2016, 11, 336.	3.1	12
100	Design and synthesis study of the thermoâ€sensitive copolymer carrier of penicillin G acylase. Polymers for Advanced Technologies, 2018, 29, 1902-1912.	1.6	12
101	Immobilization of penicillin C acylase on a novel paramagnetic composite carrier with epoxy groups. Advanced Composites and Hybrid Materials, 2019, 2, 720-734.	9.9	12
102	Integrating ZnCo ₂ O ₄ submicro/nanospheres with Co _x Se _y nanosheets for the oxygen evolution reaction and zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 2184-2191.	2.5	12
103	Identifying Affinity Classes of Inorganic Materials Binding Sequences via a Graph-Based Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 193-204.	1.9	11
104	Alkynyl and halogen co-protected (AuAg) ₄₄ nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Transactions, 2022, 51, 7845-7850.	1.6	11
105	Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters. Physical Chemistry Chemical Physics, 2015, 17, 19342-19349.	1.3	9
106	Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials, 2022, 12, 1738.	1.9	9
107	Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media. Journal of Materials Science, 2017, 52, 8016-8026.	1.7	8
108	In situ preparation of multi-wall carbon nanotubes/Au composites for oxygen electroreduction. RSC Advances, 2016, 6, 91209-91215.	1.7	7

#	Article	IF	CITATIONS
109	A novel approach of preparing zinc adipate as β-nucleating agent for polypropylene engineering. Journal of Materials Research, 2019, 34, 3654-3665.	1.2	7
110	Transition metal chalcogenides for energy storage and conversion. , 2020, , 355-391.		7
111	Homoleptic Alkynylâ€protected Ag15 Nanocluster with Atomic Precision: StructuralÂAnalysis and Electrocatalytic Performance toward CO2 Reduction. Angewandte Chemie, 0, , .	1.6	7
112	Synthesis, Crystal Structures and Luminescent Properties of Terbium, Neodymium and Yttrium Complexes with a New Amide Type Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 392-396.	0.6	6
113	Mangrove Root-Inspired Carbon Nanotube Film for Micro-Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 19897-19906.	4.0	6
114	Nanoengineering of transparent polypropylene containing sorbitol-based clarifier. Journal of Polymer Research, 2020, 27, 1.	1.2	5
115	A Homoleptic Alkynylâ€Protected Au(I)9â€Ag(I)9 Cluster: Structure Analysis, Optical Properties, and Catalytic Implications. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
116	Noble surface molecularly imprinted polymer modified titanium dioxide toward solanesol adsorption selectivity study. Journal of Materials Research, 2019, 34, 3271-3287.	1.2	4
117	The study of ultrasound-assisted extraction of flavonoids from Polygonum cuspidatum Sieb. et Zucc Journal of Materials Research, 2019, 34, 3254-3262.	1.2	3
118	Effect of variable conditions on the adsorption selectivity of molecularly imprinted polymers. Advanced Composites and Hybrid Materials, 2018, 1, 777-784.	9.9	2
119	Fast and high-yield synthesis of thiolate Ag ₄₄ and Au ₁₂ Ag ₃₂ nanoclusters <i>via</i> the CTAB reverse micelle method. Dalton Transactions, 2021, 50, 562-567.	1.6	1
120	N-Benzyl-2-[3,5-bis(benzyloxy)benzyloxy]benzamide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3283-o3283.	0.2	0