List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7524247/publications.pdf Version: 2024-02-01

FIENA DDATS

#	Article	IF	CITATIONS
1	The hypersensitive response; the centenary is upon us but how much do we know?. Journal of Experimental Botany, 2008, 59, 501-520.	4.8	597
2	Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 2006, 147, 1-24.	1.2	214
3	Abiotic Stress Responses in Legumes: Strategies Used toÂCope with Environmental Challenges. Critical Reviews in Plant Sciences, 2015, 34, 237-280.	5.7	212
4	NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 2006, 57, 489-505.	4.8	207
5	Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. Frontiers in Plant Science, 2013, 4, 215.	3.6	167
6	Proteomics of Plant Pathogenic Fungi. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-36.	3.0	127
7	Methods of nitric oxide detection in plants: A commentary. Plant Science, 2011, 181, 509-519.	3.6	119
8	Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 2007, 173, 703-712.	7.3	89
9	Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked byBlumeria graminisf. sp.hordei. Molecular Plant Pathology, 2005, 6, 65-78.	4.2	87
10	Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Scientific Reports, 2017, 7, 13311.	3.3	79
11	A metabolomic study in oats (<scp><i>A</i></scp> <i>vena sativa</i>) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photoâ€oxidative metabolism. Plant, Cell and Environment, 2015, 38, 1434-1452.	5.7	73
12	Breeding approaches for crenate broomrape (<i>Orobanche crenata</i> Forsk.) management in pea (<i>Pisum sativum</i> L.). Pest Management Science, 2009, 65, 553-559.	3.4	71
13	Quantum Dot and Superparamagnetic Nanoparticle Interaction with Pathogenic Fungi: Internalization and Toxicity Profile. ACS Applied Materials & Interfaces, 2014, 6, 9100-9110.	8.0	71
14	Fatty Acid Profile Changes During Gradual Soil Water Depletion in Oats Suggests a Role for Jasmonates in Coping With Drought. Frontiers in Plant Science, 2018, 9, 1077.	3.6	69
15	Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Research in Microbiology, 2008, 159, 476-480.	2.1	67
16	Acibenzolar- S -methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiological and Molecular Plant Pathology, 2002, 60, 155-162.	2.5	65
17	Model legumes contribute to faba bean breeding. Field Crops Research, 2010, 115, 253-269.	5.1	64
18	Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. Journal of Experimental Botany, 2006, 57, 2211-2226.	4.8	58

#	Article	IF	CITATIONS
19	Genetic Diversity and Population Structure Among Oat Cultivars and Landraces. Plant Molecular Biology Reporter, 2013, 31, 1305-1314.	1.8	55
20	<i>Medicago truncatula</i> as a Model for Nonhost Resistance in Legume-Parasitic Plant Interactions. Plant Physiology, 2007, 145, 437-449.	4.8	52
21	Quantitative Trait Loci Associated to Drought Adaptation in Pea (Pisum sativum L.). Plant Molecular Biology Reporter, 2015, 33, 1768-1778.	1.8	51
22	Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot. Euphytica, 2006, 147, 451-460.	1.2	44
23	Adaptation of oat (Avena sativa) cultivars to autumn sowings in Mediterranean environments. Field Crops Research, 2014, 156, 111-122.	5.1	44
24	Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Frontiers in Plant Science, 2015, 6, 103.	3.6	43
25	Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology, 2010, 128, 483-493.	1.7	40
26	Variability of interactions between barrel medic (<i>Medicago truncatula</i>) genotypes and <i>Orobanche </i> species. Annals of Applied Biology, 2008, 153, 117-126.	2.5	35
27	Resistance to powdery mildew (<i>Blumeria graminis</i> f.sp. <i>avenae</i>) in oat seedlings and adult plants. Plant Pathology, 2011, 60, 846-856.	2.4	35
28	Constitutive Coumarin Accumulation on Sunflower Leaf Surface Prevents Rust Germ Tube Growth and Appressorium Differentiation. Crop Science, 2007, 47, 1119-1124.	1.8	33
29	Title is missing!. Euphytica, 2003, 132, 321-329.	1.2	31
30	Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	31
31	Characterization of Resistance Mechanisms to <i>Erysiphe pisi</i> in <i>Medicago truncatula</i> . Phytopathology, 2007, 97, 1049-1053.	2.2	29
32	BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 2015, 242, 1095-1106.	3.2	26
33	Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower Genotype. Journal of Chemical Ecology, 2007, 33, 2245-2253.	1.8	24
34	Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signaling and Behavior, 2019, 14, e1651183.	2.4	24
35	ldentification and characterization of sources of resistance in <i>Avena sativa</i> , <i>A.Âbyzantina</i> and <i>A.Âstrigosa</i> germplasm against a pathotype of <i>Puccinia coronata</i> f.sp. <i>avenae</i> with virulence against the <i>Pc94</i> resistance gene. Plant Pathology, 2012, 61, 315-322.	2.4	22
36	Parasitic plant infection is partially controlled through symbiotic pathways. Weed Research, 2010, 50, 76-82.	1.7	21

#	Article	IF	CITATIONS
37	Deciphering Root Architectural Traits Involved to Cope With Water Deficit in Oat. Frontiers in Plant Science, 2019, 10, 1558.	3.6	19
38	Targeting sources of drought tolerance within an Avena spp. collection through multivariate approaches. Planta, 2012, 236, 1529-1545.	3.2	18
39	Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environmental and Experimental Botany, 2021, 182, 104333.	4.2	18
40	Differential Effects of Phenylalanine Ammonia Lyase, Cinnamyl Alcohol Dehydrogenase, and Energetic Metabolism Inhibition on Resistance of Appropriate Host and Nonhost Cereal–Rust Interactions. Phytopathology, 2007, 97, 1578-1583.	2.2	17
41	Enemy at the Gates. Plant Signaling and Behavior, 2007, 2, 275-277.	2.4	16
42	Free polyamine and polyamine regulation during preâ€penetration and penetration resistance events in oat against crown rust (<i>Puccinia coronata</i> f. sp. <i>avenae</i>). Plant Pathology, 2016, 65, 392-401.	2.4	16
43	Effects of Phenylpropanoid and Energetic Metabolism Inhibition on Faba Bean Resistance Mechanisms to Rust. Phytopathology, 2007, 97, 60-65.	2.2	14
44	Blumeria graminis Interactions with Barley Conditioned by Different Single R Genes Demonstrate a Temporal and Spatial Relationship Between Stomatal Dysfunction and Cell Death. Phytopathology, 2010, 100, 21-32.	2.2	13
45	Stomatal lockâ€up following pathogenic challenge: source or symptom of costs of resistance in crops?. Plant Pathology, 2013, 62, 72-82.	2.4	13
46	Resistance to rusts (Uromyces pisi and U. viciae-fabae) in pea. Czech Journal of Genetics and Plant Breeding, 2014, 50, 135-143.	0.8	13
47	Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop and Pasture Science, 2017, 68, 915.	1.5	13
48	Multi-Environmental Trials Reveal Genetic Plasticity of Oat Agronomic Traits Associated With Climate Variable Changes. Frontiers in Plant Science, 2018, 9, 1358.	3.6	12
49	Genomic prediction and training set optimization in a structured Mediterranean oat population. Theoretical and Applied Genetics, 2021, 134, 3595-3609.	3.6	12
50	Characterization of Resistance Mechanisms to Powdery Mildew (Erysiphe betae) in Beet (Beta) Tj ETQq0 0 0 rgB	[/Qverloch	k 10 Tf 50 22
51	Changes in polyamine profile in host and non-host oat–powdery mildew interactions. Phytochemistry Letters, 2014, 8, 207-212.	1.2	10
52	Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. Theoretical and Applied Genetics, 2021, 134, 2063-2077.	3.6	10
53	Induced inaccessibility and accessibility in the oat powdery mildew system: insights gained from use of metabolic inhibitors and silicon nutrition. Molecular Plant Pathology, 2006, 7, 47-59.	4.2	9

54 Genomic Approaches for Climate Resilience Breeding in Oats. , 2020, , 133-169.

9

#	Article	IF	CITATIONS
55	RUST: A Robust, User-Friendly Script Tool for Rapid Measurement of Rust Disease on Cereal Leaves. Plants, 2020, 9, 1182.	3.5	8
56	Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks. Molecular Plant Pathology, 2017, 18, 662-671.	4.2	7
57	AGRONOMIC ASPECTS OF THE SUNFLOWER 7-HYDROXYLATED SIMPLE COUMARINS / ASPECTOS AGRONÓMICOS DE LAS CUMARINAS SIMPLES 7- HIDROXILADAS EN GIRASOL / ASPECTS AGRONOMIQUES DE 7 COUMARINES HYDROXYLES SIMPLES CHEZ LE TOURNESOL. Helia, 2000, 23, 105-112.	0.4	7
58	Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects. Theoretical and Applied Genetics, 2022, 135, 3709-3734.	3.6	5
59	Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats. Frontiers in Plant Science, 2016, 7, 1660.	3.6	4
60	Cellular basis of resistance to different formae speciales of <i>Blumeria graminis</i> in <i>Hordeum chilense</i> , wheat, and tritordeum and agroticum amphiloids. Canadian Journal of Plant Pathology, 2006, 28, 577-587.	1.4	3
61	Chromatographic Methods to Evaluate Nutritional Quality in Oat. Methods in Molecular Biology, 2017, 1536, 115-125.	0.9	3
62	Deciphering Main Climate and Edaphic Components Driving Oat Adaptation to Mediterranean Environments. Frontiers in Plant Science, 2021, 12, 780562.	3.6	3
63	Quantum Cascade Lasers-Based Detection of Nitric Oxide. Methods in Molecular Biology, 2018, 1747, 49-57.	0.9	2