Carla Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7523775/publications.pdf

Version: 2024-02-01

40 papers

1,593 citations

20 h-index 315739 38 g-index

40 all docs

40 docs citations

40 times ranked

2057 citing authors

#	Article	IF	CITATIONS
1	Differential Clinicopathological Risk and Prognosis of Major Papillary Thyroid Cancer Variants. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 264-274.	3.6	179
2	The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clinical Endocrinology, 2010, 72, 702-708.	2.4	147
3	Clinical and molecular features of differentiated thyroid cancer diagnosed during pregnancy. European Journal of Endocrinology, 2010, 162, 145-151.	3.7	106
4	Patient Age–Associated Mortality Risk Is Differentiated by <i>BRAF</i> V600E Status in Papillary Thyroid Cancer. Journal of Clinical Oncology, 2018, 36, 438-445.	1.6	102
5	Telomerase in differentiated thyroid cancer: Promoter mutations, expression and localization. Molecular and Cellular Endocrinology, 2015, 399, 288-295.	3.2	100
6	Refining Calcium Test for the Diagnosis of Medullary Thyroid Cancer: Cutoffs, Procedures, and Safety. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1656-1664.	3.6	98
7	Comparison of Calcium and Pentagastrin Tests for the Diagnosis and Follow-Up of Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 905-913.	3.6	95
8	The Prognostic Value of Tumor Multifocality in Clinical Outcomes of Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3241-3250.	3.6	80
9	Impact of estrogen and progesterone receptor expression on the clinical and molecular features of papillary thyroid cancer. European Journal of Endocrinology, 2015, 173, 29-36.	3.7	60
10	BRAF V600E Mutation-Assisted Risk Stratification of Solitary Intrathyroidal Papillary Thyroid Cancer for Precision Treatment. Journal of the National Cancer Institute, 2018, 110, 362-370.	6.3	60
11	<i>BRAF</i> V600E Confers Male Sex Disease-Specific Mortality Risk in Patients With Papillary Thyroid Cancer. Journal of Clinical Oncology, 2018, 36, 2787-2795.	1.6	58
12	Outcome predictors and impact of central node dissection and radiometabolic treatments in papillary thyroid cancers â‰ 2 cm. Endocrine-Related Cancer, 2009, 16, 201-210.	3.1	50
13	Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocrine-Related Cancer, 2018, 25, 217-231.	3.1	50
14	BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. European Journal of Cancer, 2020, 124, 161-169.	2.8	41
15	<i>BRAF</i> V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3228-3238.	3. 6	36
16	Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. International Journal of Cancer, 2010, 126, 2874-2878.	5.1	35
17	Impact of Mutation Density and Heterogeneity on Papillary Thyroid Cancer Clinical Features and Remission Probability. Thyroid, 2019, 29, 237-251.	4.5	31
18	The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 245.	8.6	27

#	Article	IF	CITATIONS
19	The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet Journal of Rare Diseases, 2015, 10, 25.	2.7	24
20	Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer. Molecular and Cellular Endocrinology, 2016, 431, 54-61.	3.2	23
21	Tumor and normal thyroid spheroids: from tissues to zebrafish. Minerva Endocrinology, 2018, 43, 1-10.	1.1	23
22	Basal and stimulated calcitonin levels in patients with type 2 diabetes did not change during 1 year of Liraglutide treatment. Metabolism: Clinical and Experimental, 2016, 65, 1-6.	3.4	17
23	Fetal cell microchimerism: a protective role in autoimmune thyroid diseases. European Journal of Endocrinology, 2015, 173, 111-118.	3.7	16
24	Papillary Thyroid Carcinoma and Inflammation. Frontiers in Endocrinology, 2011, 2, 88.	3.5	15
25	Multicellular spheroids from normal and neoplastic thyroid tissues as a suitable model to test the effects of multikinase inhibitors. Oncotarget, 2017, 8, 9752-9766.	1.8	14
26	Are pre-miR-146a and PTTG1 associated with papillary thyroid cancer?. Endocrine Connections, 2013, 2, 178-185.	1.9	13
27	Segregation and expression analyses of hyaluronanâ€binding protein 2 (HABP2): insights from a large series of familial nonâ€medullary thyroid cancers and literature review. Clinical Endocrinology, 2017, 86, 837-844.	2.4	13
28	MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine, 2018, 61, 36-41.	2.3	13
29	Fetal cell microchimerism in papillary thyroid cancer: A role in the outcome of the disease. International Journal of Cancer, 2015, 137, 2989-2993.	5.1	12
30	The thyroid risk score (TRS) for nodules with indeterminate cytology. Endocrine-Related Cancer, 2021, 28, 225-235.	3.1	12
31	Basal and Calcium-Stimulated Procalcitonin for the Diagnosis of Medullary Thyroid Cancers: Lights and Shadows. Frontiers in Endocrinology, 2021, 12, 754565.	3.5	9
32	Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers. Frontiers in Endocrinology, 2020, 11, 589340.	3.5	8
33	Letter regarding the article: "Multiple HABP2 variants in familial papillary thyroid carcinoma: Contribution of a group of "thyroid-checked―controls―by Kern etÂal European Journal of Medical Genetics, 2018, 61, 104-105.	1.3	7
34	Personalized treatment for differentiated thyroid cancer: current data and new perspectives. Minerva Endocrinology, 2021, 46, 62-89.	1.1	6
35	Unilateral Surgery for Medullary Thyroid Carcinoma: Seeking for Clinical Practice Guidelines. Frontiers in Endocrinology, 0, 13, .	3.5	5
36	Genetic variants of PARP4 gene and PARP4P2 pseudogene in patients with multiple primary tumors including thyroid cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2019, 816-818, 111672.	1.0	3

3

#	Article	IF	CITATIONS
37	Combined Mutational and Clonality Analyses Support the Existence of Intra-Tumor Heterogeneity in Papillary Thyroid Cancer. Journal of Clinical Medicine, 2021, 10, 2645.	2.4	3
38	Clinical and molecular analyses of thyroid cancer in patients treated for benign diseases. Endocrine-Related Cancer, 2013, 20, L7-L10.	3.1	1
39	Improve knowledge and management of thyroid cancer: the role of the endocrinologist in a multidisciplinary team. Minerva Medica, 2022, 112, 689-691.	0.9	1
40	FAM83B is involved in thyroid cancer cell differentiation and migration. Scientific Reports, 2022, 12, .	3.3	0